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Abstract 

 

 

Brito Cantergiani, Gabriel; Endler, Markus (Advisor); Silva, Anderson (Co-

Advisor). EdgeSec – A Security framework for middlewares and edge 

devices in the Internet of Things (IoT).  Rio de Janeiro 2023. 51p. 

Dissertação de Mestrado – Departamento de Informática, Pontifícia 

Universidade Católica do Rio de Janeiro. 

 

The importance of the Internet of Things (IoT) has increased significantly in 

recent years, and IoT devices are being used in many different industries and types 

of applications, such as smart homes, industrial sensors, autonomous vehicles, 

personal wearables, and more. While this brings technology innovation, new user 

experiences, and new business solutions, it also raises important concerns related 

to information security and privacy. In this work we present EdgeSec Framework, 

a new IoT security framework, made concrete as a security solution for ContextNet 

and Mobile-Hub middlewares. Its main goal is to extend and improve on an existing 

security architecture and implementation, creating a more generic, robust, and 

flexible solution that ensures authentication, authorization, data integrity and 

confidentiality. The framework was designed with full extensibility in mind by 

introducing protocol interfaces that can be implemented by external plugins, 

making it compatible to a variety of security algorithms and edge devices. A 

complete implementation was developed as proof-of-concept, and performance 

tests and experiments were made to evaluate the feasibility of the solution. Results 

show that EdgeSec framework can greatly improve the security of Mobile-Hub and 

similar IoT middlewares by increasing its compatibility and flexibility, and ensuring 

all the basic security protections. 

 

 

Keywords 

Security; Information Security; Internet of Things; Cryptography; 
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Resumo 

 

 

Brito Cantergiani, Gabriel; Endler, Markus; Silva, Anderson. EdgeSec – Um 

framework de Segurança para middlewares e dispositivos na Internet 

das Coisas. Rio de Janeiro 2023. 51p. Dissertação de Mestrado – 

Departamento de Informática, Pontifícia Universidade Católica do Rio de 

Janeiro. 

 

A importância da Internet das Coisas (IoT) tem aumentado significativamente 

nos últimos anos, e dispositivos IoT têm sido usados em diferentes indústrias e tipos 

de aplicação, como casas inteligentes, sensores indutriais, veículos autonomos, 

wearables, etc. Apesar deste cenário trazer inovações tecnológicas, novas 

experiências para usuários, e novas soluções de negócio, também levanta 

preocupações relevantes relacionadas a segurança da informação e privacidade. 

Neste trabalho nós apresentamos o EdgeSec Framework, um novo framework de 

segurança para IoT desenvolvido como uma solução de segurança para os 

middlewares ContextNet e Mobile-Hub. O seu objetivo principal é estender e 

melhorar uma arquitetura e uma implementação já existentes para estes 

middlewares, criando uma solução mais genérica, robusta e flexível,e garantindo 

autenticação, autorização, integridade e confidencialidade de dados. O framework 

foi elaborado com foco na total extensiblidade através da introdução de interfaces 

de protocolos, que podem ser implementadas por plugins, tornando-o compatível 

com uma variedade de algoritmos de segurança e dispositivos IoT. Uma 

implementação completa foi realizada como prova de conceito, e testes de 

desempenho e experimentos foram realizados para avaliar a viabilidade da solução. 

Os resultados mostram que o EdgeSec Framework pode melhorar 

significativamente a segurança do Mobile-Hub e diversos tipos de aplicações IoT 

através de uma maior compatibilidade e flexibilidade, e garantindo todas as 

proteções básicas de segurança. 
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Segurança; Segurança da Informação; Internet das Coisas; Criptografia; 

Framework; Bluetooth; Computação Edge; 
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1  

Introduction 

The importance of the Internet of Things (IoT) has increased significantly in 

recent years, and IoT devices are being used in many different industries and types 

of applications, such as smart homes, industrial sensors, autonomous vehicles, 

personal wearables, and more. Further growth is expected for the coming years, 

with new sensors becoming cheaper, more powerful, and more reliable [1]. This 

opportunity may be used to drive technological advancements such as in 5G 

networks, Edge Computing and Artificial Intelligence. According to some 

projections, the impact of IoT on the global economy may reach $11 trillion by 

2025, with more than 100 billion connected devices [2]. 

While IoT brings technology innovation, new user experiences, and new 

business solutions, it also raises important concerns related to information security 

and privacy. In today’s connected and digital world, any device that exchanges data 

through the internet is exposed to many of the most common threats. This includes 

unauthorized access to confidential information, private data breaches and 

unauthorized control of devices to perform malicious activities on the internet.  

However, because IoT smart devices allow for remote interaction with the 

physical world (e.g., smart locks, ambient temperature control, robots, vehicles, 

etc.), compromises in their security can pose other types of risks that involve the 

physical safety of people and infrastructure. Additionally, the large-scale and 

distributed nature of many IoT systems allows for attacks that are potentially very 

destructive and can have an enormous impact on internet services. 

Traditional information security mechanisms that involve perimeter security 

and devices like firewalls and intrusion detection systems, were created without this 

new IoT distributed context in mind. The level of protection required by some IoT 

systems cannot be ensured using these same security mechanisms. That is why the 

massive adoption of IoT in society and industries brings new challenges and the 

need for new security solutions aimed at the Internet of Things. 

The focus of this research is to define and present a new security framework 

for IoT middlewares, which we named EdgeSec Framework. Its development was 

made concrete as a solution for improving the security of ContextNet and Mobile-

Hub middlewares [3] [4], and it can be considered an evolution of previous research 

on this area. It is built on top of an existing security architecture and algorithm 

proposed in the context of the Internet of Mobile Things and Edge Computing, 

using it as conceptual foundation [5]. It is also based on a previous implementation 

project called EdgeSec, which aimed at creating a practical and functional prototype 

of the same security architecture and incorporate it inside Mobile-Hub middleware 

[6]. 

The main goal of EdgeSec Framework is to extend and improve on the 

existing EdgeSec implementation, creating a more generic, flexible, and extensible 

solution. This should increase compatibility with different IoT devices and enforce 

basic security protections on IoT middlewares such as the Mobile-Hub. 

Additionally, it also has the goal of (i) refactoring and optimizing previous 

implementations of the security architecture; (ii) porting it to new versions of 



Mobile-Hub middleware; and (iii) improving performance metrics to create a 

feasible, flexible, and practical security solution. 

Because Mobile-Hub is a mobile middleware, it can be used for 

crowdsensing, by offering connectivity to a wide array of devices, each possessing 

varying hardware setups, manufacturers, and network providers. To support this 

kind of scenario, the Framework was developed with  extensibility was a key 

attribute considered by design, allowing for new security protocols and algorithms 

to be easily added to the system. This was achieved through the definition of 

multiple protocol interfaces and implementation of plugins. Protocol suite 

negotiations were also introduced into the main algorithm, together with many other 

security mechanisms that ensure authentication, authorization, integrity, and 

confidentiality to all data exchanged between devices. 

In this dissertation, we first go through some definitions and concepts to give 

background information on the proposed solution, which includes Internet of 

Mobile Things (IoMT), Edge Computing, Bluetooth Low Energy, essential security 

mechanisms, Mobile-Hub middleware and more. Then, in chapter 3 we present 

some of the related work on security frameworks for IoT. On chapter 4 we give a 

detailed explanation of how the security architecture and algorithm of EdgeSec 

works, and how the framework was structured to improve on existing solutions. 

Chapter 5 describes a prototype implementation created to prove the concept and 

run performance tests. These tests are presented and analyzed in chapter 6, and we 

give final remarks and conclusions on chapter 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

Background and Definitions 

 

2.1 

IoMT and Edge Computing 

The Internet of Things (IoT) describes physical objects with sensors, 

processing power, software and other technologies that connect and exchange data 

with other devices over communication networks. Because of their embedded 

technology, these devices are usually called smart objects, which is how we are 

going to reference them in this text. In many traditional IoT systems and 

applications, smart objects are stationary, and are built into the physical 

infrastructure of homes, offices, roads, etc. 

The Internet of Mobile Things (IoMT) is a subset of IoT, where smart objects 

may be moved to different locations from time to time, or even move autonomously, 

but remain remotely accessible and controllable from anywhere on the internet [2]. 

IoMT systems commonly includes devices such as mobile phones, vehicles, robots, 

and wearables, all of which can have high connectivity and locomotion capabilities. 

Some examples of IoMT applications and use cases include smart cities, smart 

homes, environmental monitoring, health care, logistics and more. 

Another important concept that is related to IoMT is Edge Computing, which 

refers to a distributed computing paradigm that brings computation and data storage 

closer to the source of where data is generated [7]. In traditional cloud computing 

models, data is  sent to centralized servers for processing and analysis. In Edge 

Computing, computing processing power is moved to the edge of the network 

architecture, closer to where the data is generated or consumed. This approach 

enables faster response time, reduces latency, and uses network resources more 

efficiently. 

If we think of the IoMT examples given above, smart objects are great use 

cases for how Edge Computing can be leveraged to create more flexible and 

resilient applications. Considering that on IoMT systems edge devices are always 

on the move, increasing their processing power allows computations to be made 

anywhere without relying on fast and stable internet connections. It also allows for 

real-time analysis and actions, which are crucial in time-sensitive applications like 

autonomous vehicles, industrial automation, or remote monitoring systems. 

On the context of IoMT and Edge Computing, there are some applications 

that leverage both concepts to extend the capabilities of simple sensors through 

more powerful edge devices. Consider a scenario where we have thousands of very 

simple sensors, without considerable processing power, generating data. We may 

use a more powerful mobile device, to opportunistically discover and connect with 

those sensors when nearby, collecting data being generated and transmitting 

through the internet for further processing. This is a great example of both IoMT 

and Edge Computing concepts being used in practice, and it is very important for 

understanding the motivation and goals behind this project, since EdgeSec 

Framework was created and developed in the context of this type of system. 



2.2 

WPAN and Bluetooth Low Energy (BLE) 

Personal Area Networks (PANs) are computer networks for interconnecting 

electronic devices within a person’s workspace area [8], that is, within a short range 

of a few centimeters to a few meters of physical space. Wireless Personal Area 

Networks (WPANs) are PANs that transmit information over wireless network 

mediums and technologies. Some examples include Zigbee and Bluetooth, with the 

latter being the most widely used WPAN. 

Bluetooth is a low-power, short-range radio technology that streams data over 

79 different channels in the 2.4Ghz frequency band [9]. It can be used by stationery 

or mobile devices to exchange data over short distances. Bluetooth Low Energy 

(BLE) was introduced in version 4 of Bluetooth core specification, and it is a 

different technology designed for very low power operation [10]. This means that 

BLE consumes significantly less power than the original Bluetooth, allowing it to 

be used by devices with more strict energy requirements. 

BLE communication can be established using different configurations and 

topologies, and there is a trade-off between energy consumption, latency, number 

of connected devices and data transfer rate. BLE architecture divides connected 

devices into Central devices, which are usually more powerful mobile phones, and 

Peripheral devices, which are small, low-power and resource constrained devices. 

A Peripheral device can only be connected to a single Central device at a time, while 

a Central device can keep multiple connections simultaneously. Figure 1 illustrates 

a connection topology [11]. 

Considering the roles that BLE defines for each device in a communication 

session, it is clear that this is a very suitable technology for the examples of IoMT 

and Edge Computing applications mentioned in the previous section. In fact, BLE 

is widely used in IoMT systems, where mobile devices act as the Central BLE 

device, and sensors act as the Peripheral BLE device. Moreover, BLE scanning 

properties and the relationship between Central and Peripheral devices are 

properties that make it a perfect technology to implement the opportunistic 

discovery of Smart Objects by Mobile-Hubs and Gateways. 

 

 

Figure 1 - Bluetooth Low Energy Connection Topology 



2.3 

Security Concepts 

There are many different techniques and technologies that can be used to 

create security when users or devices are communicating and exchanging data in a 

network. In the context of this work, communication is done between devices such 

as servers, mobile phones, or smart objects and sensors. In the examples given 

below, we are only considering these type of devices as main actors,  

In general, we are always aiming to enforce one or more basic security 

protections. The ones that are relevant in this project and are covered in some way 

by EdgeSec are: 

• Authentication: there should be a way to verify if a device identity in a 

network is valid, and if it is really who it says it is. If a device tries to 

impersonate another by using a fake identity, a proper authentication 

mechanism should be able to identify this malicious activity and deny any 

type of access or action on the system. 

• Authorization: there should be a way to verify if a certain device with a 

known identity is allowed to perform certain actions in a system. An 

example of authorization is the decision of whether two devices are allowed 

to communicate with each other. Another example is allowing or denying 

the permission for a certain device to access a certain type of data in a server. 

• Confidentiality: when two devices are exchanging messages, there should 

be a way to avoid disclosure of the messages’ content from unwanted third 

parties. This usually involves some type of encryption to transform the 

message in a way that only the two ends of the communication can decrypt 

and understand the message, making it unintelligible for others that capture 

the messages while it is being transferred. 

• Integrity: there should be a way to verify if a message sent through a 

network between two devices was not tempered or modified by a third party. 

With confidentiality, we assure the encrypted message will protect the data 

from being exposed to malicious actors, but we cannot ensure they will not 

temper the message. Integrity checks create this type of protection by using 

some mechanism that allows us to verify if a message has been modified 

during transport. 

In sections 2.3.1, 2.3.2 and 2.3.3, some of the mechanisms used in this project 

to achieve the security concepts listed above will be mentioned and briefly 

explained. This is not intended to be an extensive and complete explanation, as 

these are complex subjects that require a more in-depth analysis to be fully 

understood. The goal is to present and summarize some of these topics for readers 

that are not familiar with, which will make it easier to understand how and why 

they are used in EdgeSec. 

2.3.1 

Message Authentication Code (MAC) 

Message Authentication Code (MAC) is a security mechanism used to create 

both authentication and integrity protections on a message [12]. This is done by 



concatenating a short piece of information (the authentication code) at the end of 

the original message, which is used to verify if both the identity of the sender and 

the message content are valid. 

These protections are achieved because the short piece of information added 

to the message must be generated with a security key that only the sender and 

receiver should possess. Because both sender and receiver use the exact same key, 

this is similar to symmetric encryption, which is going to be further explained in 

section 2.3.2. 

The sender should use the security key to perform a transformation on the 

original message, generating a unique MAC. After receiving the payload, the 

receiver will separate the message from the MAC, perform the same transformation 

using the same key, and compare both MACs. If they match, it means the message 

was sent by the right sender because only they would have access to the key. And 

we can also assure the message integrity because any change or tampering on the 

message content would result in a different MAC. 

In terms of implementation, the transformation mentioned before can be 

achieved through different security algorithms. One of the most common, and the 

one used in this work, is a cryptographic hashing function. Hashing functions are 

one-way, deterministic functions that transform an input of variable length into an 

output of a fixed size. Because it is a one-way function, there is no way to reverse 

it. In other words, it is very hard to guess the input based only on the output. 

Additionally, because it is deterministic, the same input will always generate the 

same output. And it´s rare, although possible, for two different inputs to generate 

the same output, an event known as collision effect. A good hash function shall 

avoid this to occur for inputs with a high correlation between them. For inputs that 

have a low correlation between them, it might happen but, usually the inputs will 

not belong to the same context, so we expect the system to reject the out of context 

input. 

These characteristics make hashing functions an ideal implementation for 

Message Authentication Code algorithms. The input is usually the concatenation of 

the message with the security key. And the output is the MAC that is sent together 

with the message. Upon receipt, the receiver can concatenate the message with the 

key and perform the hash function again, which should result in the same MAC. 

From now on, we will use the acronym HMAC to denote hashing message 

authentication code algorithm. Figure 2 illustrates a Message Authentication Code 

algorithm using a hashing function. 

In this project we use two different MAC algorithms to achieve authentication 

and integrity of messages in our proof-of-concept implementation: HMAC-MD5 

and HMAC-SHA1. MD5 is a type of hashing function that, despite not being the 

most secure and presenting some vulnerabilities, was preferred due to lower 

computational requirements, allowing it to run smoothly on low power devices. It 

generates a 128-bit output and was designed by Ronald Rivest in 1991[13]. SHA1 

is another very popular type of hashing function that produces a 160-bit output and 

was designed by the United States National Security Agency [14]. It is stronger than 

MD5, but still not recommended for production use today due to known 

vulnerabilities. These two algorithms were chosen because of the many available 



open-source implementations for low power devices, which is not the case for more 

modern and advanced MAC algorithms. 

 

Figure 2 - Diagram of how Message Authentication code works 

2.3.2 

Symmetric Key Encryption 

Data encryption is the foundation for protecting data on the internet. Because 

we exchange messages through the internet’s public infrastructure on a global scale, 

a security mechanism to hide the content of what is being transferred is essential to 

many modern services, such as texting, online banking, e-commerce, and more. 

[15] 

For this work, data encryption is used to achieve confidentiality in messages 

exchange between devices. More specifically, we use symmetric key cryptography, 

which is when the sender and receiver share the same cryptographic key. This same 

key is used to both transform plain text into cipher text and revert cipher text back 

to plain text. This contrasts with asymmetric cryptography, where there is a pair of 

public and private keys to generate unique secrets to each side of the 

communication. 

There are two types of symmetric cryptography, with stream ciphers or block 

ciphers. In stream ciphers, the bytes are encrypted sequentially one by one. On 

block ciphers, blocks of bytes are encrypted as a whole one by one. Each algorithm 

uses a different number of bytes in each block. In this project, only stream cipher 

will be used. 

The advantage of using symmetric key cryptography is because it is faster 

and lighter than asymmetric cryptography. This makes it way more accessible, 

allowing it to be used in simpler devices with smaller memory size and low 

processing power, such as IoT sensors. The most important disadvantage is the fact 

that both sender and receiver need to agree on a unique secret key, which can be 

complex when managing many devices communicating in the same system [16]. 



 

In our proof-of-concept implementation, we use RC4 as the symmetric key 

cryptography algorithm of choice. It is also not considered the most secure 

nowadays and presents many vulnerabilities. However, it is remarkably simple and 

fast, being a great choice for a POC with low-powered devices. It was also designed 

by Ronald Rivest, in 1987 [17]. Similarly to the MAC algorithms, RC4 was one of 

the few algorithms were we can easily find open source implementations for low-

power devices. More advanced and secure algorithms lack this type of support. 

2.3.3 

One-time passwords (OTP) 

Passwords and secrets are used across systems and algorithms to enforce data 

authentication, authorization, confidentiality, and integrity. Depending on the 

application and use case, always using the same password multiple times can be 

considered a vulnerability. Because of this there is a security mechanism called 

One-time password (OTP), where we only use a password for a single operation or 

transaction. A new password should be used for subsequent operations, avoiding 

attacks that replicate past states [18]. 

There are different types of OTP algorithms, including: 

• Based on time-synchronization, where two parties synchronize their 

clocks and generate a unique code based on the current timestamp and 

a shared secret key. 

• Based on hash-chains, were new OTP values are based on previous 

ones, creating a chain of passwords that only the two parties can agree 

on. 

• Based on challenge-response, where one party should provide a 

response to a challenge from the other party. 

OTPs are widely used in many internet services to establish two-factor 

authentication, where a user typically stores the shared key in a personal device and 

inputs a newly generated code every time it wants to re-authenticate [18]. 

In this project, we use OTPs to enhance the security of communication 

sessions between devices. Every time a Mobile-Hub and a smart object try to 

authenticate with each other, a new OTP is generated, ensuring that old 

communication sessions are invalid, and that new keys should be used. 

2.4 

ContextNet and Mobile-Hub 

ContextNet is an IoMT Middleware that provides context services for wide 

and large-scale pervasive applications [6]. Its singular feature is that it employs 

mobile smartphones as hubs for discovering and connecting smart edge devices to 

the upstream servers on the internet. Some use cases are remote monitoring, 

coordination of a network of drones, management of Bluetooth sensors in modern 

hospitals and smart cities. 



ContextNet’s main component is the ContextNetCore, a network of servers 

running in the cloud that are responsible for providing the communication and 

context distribution capabilities. The Core is composed of many different 

processing servers that are used for different purposes, and cloud gateways that 

connect these inner processing nodes to external devices. It is extensible and 

flexible, allowing for new services and software modules to be implemented and 

integrated as new nodes inside the Core. 

 Mobile-Hub is another IoMT Middleware that runs on Android devices and 

is used as a mobile gateway and hub within the ContextNet architecture [3]. This 

Middleware serves as a bridge between simpler edge devices that do not have 

internet capabilities to communicate with ContextNetCore processing nodes and to 

send and to receive data over wide range internet protocols and local area protocols. 

 Mobile-Hub was also designed to be a flexible and extensible middleware. 

Its architecture facilitates the integration of new technologies for WPAN and 

WLAN communication. By leveraging the use of generic interfaces and 

implementing new drivers and custom configurations, we can easily introduce new 

devices to the system. New configurations can also be retrieved from upstream 

servers, without having to prepare the application for all types of devices that it may 

encounter. This means that Mobile-Hub can be extended dynamically, during 

runtime. A new version of Mobile-Hub, known as Mobile-Hub 2, introduced a new 

code architecture and technology stack. Most of the mentioning to Mobile-Hub in 

this document will refer to version 2. 

 The reason for citing these two Middlewares as background is because they 

served as a motivation for creating the EdgeSec framework. Despite the conceptual 

idea behind the framework being generic and flexible, ContextNet and Mobile-Hub 

were used as test cases for developing and proving the usability of this security 

solution, as we are going to show on the proof-of-concept implementation chapter. 

These Middlewares represent the type of application that EdgeSec framework aims 

at supporting and will be used as example throughout this document to illustrate 

some of its features. 

 

 

 

 

 

 

 

 

 

 

 

 



3 

Related Work 

As expected, due to the widespread use of IoT systems and the importance of 

security in today’s connected world, there is a considerable amount of related work. 

This is especially true if we analyze security in a broad way, including server-side 

security, client-side security, network security, hardware security, and more. To 

narrow down the scope of the works related to this one, we are going to focus solely 

on security frameworks aimed at IoT systems. Other types of IoT security solutions 

that are not designed as frameworks will not be considered. 

In my research for related work, I observed a pattern for types of security 

framework solutions that could be separated into two kinds of approaches: 

frameworks for detection and modelling of security threats, and frameworks for 

prevention against security attacks. Apart from some specific exceptions, most of 

the work I found could fit into one of these two groups. Each group of solution 

target different ways in which an IoT system can be protected from malicious 

activities. 

For the first group, it is common to see an intersection between security and 

Machine Learning techniques. This type of solution uses Artificial Intelligence 

strategies to detect and model viruses and other types of attacks. 

An example of this kind of solution was proposed in the “IoT Security 

Framework for Smart Cyber Infrastructures” paper, where the authors present a 

security framework for IoT applications in smart infrastructures, such as smart 

homes and smart buildings [19]. The framework utilizes intrusion detection systems 

(IDS) to continuously monitor the network and collect data from sensors in order 

to detect any unusual activity within the IoT environment. This data is used to 

identify specific sensors and compare their behavior to expected patterns. The 

framework categorizes any attack that gets detected based on the type of abnormal 

behavior, taking appropriate recovery measures, such as re-authenticating the 

sensor, discarding sensor data, or modifying the network configuration.  

There is another example that builds on top of the work just mentioned, and 

it follows the same paradigm of using AI to detect knowledge-based and anomaly-

based attacks [20]. It has a strong focus in using Software Defined Networks 

(SDNs) and Network Function Virtualization (NFV) technologies to increase 

control over the IoT network and enhance the ability of detecting and reacting to 

attacks. 

It also proposes a security framework in which IoT devices are part of a 

network architecture controlled by SDNs/NFVs controllers that actively monitor 

the activity using Machine Learning algorithms to detect anomalies and launch 

mitigation actions in a closed loop. 

The two frameworks mentioned above use a reactive approach, detecting and 

acting on attacks that are already under way. The other type of related work, which 

is the one where EdgeSec fits in, is usually associated with a software tool, service, 

or protocol that can be integrated into an IoT system architecture to prevent exploits 

from happening in the first place. It is a strategy of creating safeguards that ensure 



authenticity, integrity and/or confidentiality to data, with the cost of introducing 

some overhead and additional processing. 

The paper written by S. Sridhar is an example of this second type of related 

work, which is very similar to EdgeSec in terms of general concept and structure, 

considers an architecture of edge devices, mobile gateways, and cloud servers, and 

it uses encryption and session keys to protect all data in transit [21]. It requires 

devices to be previously registered in a centralized database, or Master Key 

Repository, to securely authenticate elements of the communication. This creates a 

protection against malicious devices that try to impersonate others and send fake 

messages. 

However, it differs from EdgeSec in a few ways. It uses asymmetric 

cryptography algorithms, which cannot be supported by some types of devices, and 

does not verify data integrity on every message exchanged. Most importantly, it 

does not provide full flexibility to change the cryptographic algorithms.  

The work done by R. Hsu is the most closely related to EdgeSec in terms of 

goals, scope, and security strategy [22]. It also recognizes the fact that many related 

projects only offer basic security protection, and fail to overcome the challenges of 

device heterogeneity, key management complexity, and computational power 

scarcity on the same IoT system.  

This work addresses these issues by proposing a reconfigurable framework 

that focuses on edge computing, called Reconfigurable Security Framework for IoT 

(ReSIoT). This is done through the introduction of a security agent (SA), which is 

an edge device with more processing power dedicated to handle cryptographic 

algorithms and reduce the computation cost on other edge devices. These other edge 

devices only need to keep a security key to communicate with the SA. 

The SA is responsible for managing and distributing keys to nearby devices 

through a global key management system, and it inherits the protection mechanisms 

of the underlying protocol communication layer. The goal is to ensure the basic 

security requirements of confidentiality, integrity, availability, and non-repudiation. 

These are classified as security functions (SFs), which are handled solely by SAs. 

The ReSIoT architecture includes three main layers: (i) connectivity, 

consisting of network protocols such as BLE, UDP, MQTT, and TLS; (ii) security 

and resource layer, which is where the SA sits, and where it performs SFs; and (iii) 

application layer, consisting of application resources on server and client level. 

They also define Reconfigurable Security Functions (RSFs), which is a protocol 

that can be thought of as a middleware used to perform the security algorithms and 

fulfill the SFs. 

Although ReSIoT solves many of the issues that are open on other works 

described here, there are still some scenarios where EdgeSec can offer a better 

solution. In particular, adding an extra device to work as a security agent is not 

practical or even possible in many IoT Systems, such as applications that require a 

very large number of edge devices distributed across a wide area. Another important 

consideration is that ReSIoT does not use a concrete implementation for RSFs, 

which can vary a lot depending on the device and operating system it is running on, 

as well as which security operation is required in each communication.  



Section 4 shows that EdgeSec differs from that approach by ensuring the same 

security requirements without an extra device to run as security agent. We aim for 

a specific type of IoT architecture, where a mobile gateway is always present in the 

edge near sensors. We can leverage these mobile gateways to serve as main security 

agents, with the advantage of its mobility to cover wide areas and a large number 

of sensors. Additionally, EdgeSec provides a solid implementation of its core 

capabilities, and proposes new security mechanisms that consider computational 

power limitations, so that these operations can be performed end to end, including 

on edge sensors, mobile gateways, and cloud servers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

EdgeSec Framework 

Before explaining how EdgeSec framework works, it is important to go 

through how it was conceived and the foundations behind it. The general 

architecture and security algorithm used by the framework was first proposed in 

[5]. In this work, the authors created a security solution aimed at IoT systems, with 

special focus on edge devices and edge computing. 

The main goal of this solution is to achieve data integrity, authentication, 

confidentiality, and access control on a decentralized and heterogeneous IoT 

network. The architecture considers a system of three main components: (i) 

processing servers on the cloud; (ii) mobile devices acting as gateways; and (iii) 

edge devices or sensors that generate raw data. A security protocol for establishing 

a secure connection between mobile gateways and edge devices is presented as part 

of the solution.  

The authors also describe a threat model for this type of architecture and IoT 

environment. They arrange threats into two distinct groups: threats to the operation 

of entities of the IoT system; and threats to the communication between entities of 

the IoT system. We can assume the same threat model for EdgeSec Framework, and 

more details about each threat group can be found in [5]. 

Both the architecture and the protocol were proposed conceptually and made 

concrete as an extension of ContextNet and Mobile-Hub. These middlewares were 

used as examples and use cases of how this solution could improve the overall 

security of an IoT system.  

To prove the concept, a few implementation projects were developed with the 

goal of turning this into a functional solution that could be effectively used in real 

world applications. One of these projects, named EdgeSec, consisted in 

implementing the security protocol inside ContextNet and Mobile-Hub, together 

with a microcontroller acting as an edge device [6]. It was executed and tested end 

to end, achieving real and practical results. Later, a new implementation project 

adapted EdgeSec to Mobile-Hub version 2, improving the performance of the 

security algorithm. 

Despite being successful in proving that the solution could create a great level 

of security for these middlewares, there were a few problems and challenges that 

still needed to be addressed in this EdgeSec proof-of-concept implementation. The 

most important was regarding flexibility: the code was protocol specific, and would 

only work with BLE as WPAN protocol, HMAC-MD5 as authentication and 

integrity mechanism, and RC4 as cryptographic algorithm. Any change in one of 

these protocols would mean a complete rewrite of the project’s code. Additionally, 

the edge device implementation was too hardware-specific, so that any new device 

that is to be used within the architecture also required a complete rewrite of parts 

of the code. 

In order to address these problems, we develop a new solution, proposed here 

in this work, called EdgeSec framework. The framework aims to solve the 

flexibility problem and achieve a more robust security solution for the ContextNet 

and Mobile-Hub 2 middlewares and can be considered an evolution of the original 



EdgeSec implementation. Because of this, EdgeSec framework shares the same 

foundations of the initial conceptual proposal, including the general architecture 

and security protocol. In section 4.1, we will explain in detail how the existing 

architecture and protocol works, with minor improvements and changes. In section 

4.2, we will explore the main contribution of this project, and how the framework 

expanded previous works into a more complete solution. 

4.1 

EdgeSec Architecture and Protocol 

4.1.1  

Initial Set up 

The architecture can be divided into three components:  

i. Edge devices or sensors acting as Smart Objects; 

ii. Mobile devices acting as bridges or mobile gateways; 

iii. A central processing node acting as an authorization server.  

Prior to using EdgeSec, a few data initialization needs to take place: 

• The authorization server must store the ID of all Smart Objects that 

are part of the system. 

• The server should also hold a relation of all mobile gateway/smart 

object pair that are allowed to authenticate and communicate with 

each other. This is needed to enforce any required access control. 

• Each Smart Object must store three security keys: two symmetric 

authentication keys, one of them being its own key and the other being 

the server`s key, and an encryption key. 

• The authorization server must store its own key along with the 

authentication and encryption key of all registered devices. 

These steps can be set up during a registration process, where each device that 

will be part of the system is registered and configured with all keys and data 

necessary. This process can be manual or automated. There are plans to create an 

automation mechanism, where a batch of devices get all registered at once, 

facilitating the use of EdgeSec in large scale systems. This is one of the goals as a 

future work for this project. The initial set up is illustrated in Figure 3. 

 



 

Figure 3 - Three components of EdgeSec architecture and its initial set up data 

4.1.2 

First connection and handshake 

EdgeSec comes into action when a Mobile Gateway finds a nearby Smart 

Object and tries to communicate with it securely. When these two devices start the 

process of communication, the security algorithm starts. This algorithm can be 

further divided into four parts: handshake, authorization, authentication, and secure 

data exchange. 

Because most WPAN protocols do not support application-level data being 

exchanged before a connection is already established, this handshake happens after 

a first connection. However, despite being connected, the devices can only 

exchange real sensor data after the authentication process is finished. If this process 

fails to be completed, the connection is immediately terminated. 

The first part of the communication process begins with a handshake between 

the Mobile Gateway and Smart Object, where they exchange a few messages to 

share their IDs with each other.  

In the original security solution, this handshake restricted the two parties to 

just sharing their IDs. EdgeSec Framework redesigns and extends the handshake 

into a more flexible process, allowing more data to be exchanged, such as 

framework version and protocol suite negotiation.  

Although the suite negotiation is not strictly needed for the functionating of 

the algorithm, it significantly improves its flexibility, allowing for devices to decide 

dynamically during runtime which protocols are going to be used in the secure 

communication. This negotiation should be similar to how TLS (Transport Layer 

Security) negotiates ciphers. Because the implementation of protocol handshakes 

can be difficult, an alternative is to store all the protocol suites supported by Smart 

Object and Mobile Gateway during registration phase. This way, the Authorization 

Server can decide which protocols to use based on the suites supported by each 

device, simplifying the handshake process. 

After connecting to Smart Object, exchanging IDs, and deciding on which 

protocols are going to be used, Mobile Gateway starts a connection with the 

Authorization Server through the internet using some type of well-known security 

layer, such as TLS or any VPN protocol. This security layer is important to make 



sure that data is secured end to end, in all parts of the IoT architecture. It usually 

involves key exchange algorithms, digital signing, and digital certificates, as in TLS 

protocol. Since there are many reliable, modern, and proven solutions for this type 

of security layer, it is out of scope for EdgeSec Framework project. 

4.1.3 

Authorization 

In this step, the Mobile Gateway sends the handshake information (pair of 

IDs and negotiated protocol suite) to the Authorization Server to ensure that it can 

go forward with this communication. The Server should check in its previously 

configured database if the two parties are allowed to communicate. If the result is 

positive, the server starts to prepare a response that contains a few different 

elements. First, it needs to generate an OTP (One Time Password), which is unique 

to each authentication process, with the following equation:   

 

𝑂𝑇𝑃 = ℎ𝑎𝑠ℎ(𝑂𝑇𝑃𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 + 𝑆𝑚𝑎𝑟𝑡 𝑂𝑏𝑗𝑒𝑐𝑡 𝐼𝐷

+ 𝑀𝑜𝑏𝑖𝑙𝑒 𝐺𝑎𝑡𝑒𝑤𝑎𝑦 𝐼𝐷
+ 𝑆𝑚𝑎𝑟𝑡 𝑂𝑏𝑗𝑒𝑐𝑡 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐾𝑒𝑦) 

( 1 ) 

Where hash can be any secure hashing function, and OTPChallenge is a 

pseudo random 13-bytes positive number.  

Another element generated by the server is a random Session Key. After 

authentication, when data is being transferred between Mobile Gateway and Smart 

Object, the OTP is used as a HMAC signing key to prove the authenticity and 

integrity of all messages, and the Session Key is used as a symmetric cryptographic 

key to encrypt and decrypt the message content. Figure 4 illustrates this process of 

protecting data in EdgeSec. 

 



 

Figure 4: Process of securing a message using the Session Key to encrypt/decrypt 

(confidentiality) and OTP to authenticate (authenticity and integrity). 

The server responds to the authorization request by sending back the OTP, the 

Session Key, and an authentication package, named PackageK. This package will 

later be used by the Smart Object to verify messages, and it follows the equations 

below:  

𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐾 = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑(𝑂𝑇𝑃𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 + 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐾𝑒𝑦) 

( 2 ) 

𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

= 𝑂𝑇𝑃 + 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐾𝑒𝑦 + 𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐾 + 𝐻𝑀𝐴𝐶(𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐾) 

( 3 ) 

Where the encryption key in (2) is the Smart Object Symmetric Encryption 

Key, and the HMAC key in (3) is the Authorization Server`s Authentication Key. 

The whole authorization process is illustrated in Figure 5. 

 



 

Figure 5 - Authorization process in EdgeSec 

4.1.4 

Authentication 

After receiving a positive authorization response, the Mobile Gateway is 

ready to proceed connecting with the Smart Object. To notify the Smart Object of 

the authentication process, and prove its identity, a HelloMessage is sent, which has 

the following format:  

 

𝐻𝑒𝑙𝑙𝑜𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐾 + 𝐻𝑀𝐴𝐶(𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐾) 

( 4 ) 

𝐻𝑒𝑙𝑙𝑜𝑀𝑒𝑠𝑠𝑎𝑔𝑒

= 𝐻𝑒𝑙𝑙𝑜𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡

+ 𝐻𝑀𝐴𝐶(𝐻𝑒𝑙𝑙𝑜𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡) 

( 5 ) 

Where the HMAC key in (5) is the OTP from the authorization response. 

After receiving this message, the Smart Object starts to validate the 

authentication process. For this validation, it needs to re-generate the HMACs using 

keys previously stored in its memory and compare with the HMAC received from 

the Mobile Gateway. If both the PackageK HMAC and HelloMessage HMAC 

match the expected values, the message passes the integrity and authenticity test. 

The Smart Object then extracts the OTPChallenge and Session Key values from 

PackageK by decrypting it, and then re-generates the OTP. Now, it can store both 



the OTP and Session Key in its memory, which are going to be used to encrypt, sign, 

and validate future messages.  

To finish the authentication process and signal to the Mobile Gateway about 

the success in validating the message, the Smart Object responds with a signed 

HelloAcceptedMessage, following the equation below:   

 

𝐻𝑒𝑙𝑙𝑜𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 𝐺𝑎𝑡𝑒𝑤𝑎𝑦 𝐼𝐷 + 𝑆𝑚𝑎𝑟𝑡 𝑂𝑏𝑗𝑒𝑐𝑡 𝐼𝐷   

( 6 ) 

𝐻𝑒𝑙𝑙𝑜𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒 = 

𝐻𝑒𝑙𝑙𝑜𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡

+ 𝐻𝑀𝐴𝐶(𝐻𝑒𝑙𝑙𝑜𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡) 

( 7 ) 

Where the OTP is the HMAC key in (7).  

The Mobile Gateway receives this message, validates the signature, and if 

successful, the authentication process is over. Figure 6 illustrates the authentication 

process. 

Now, both devices communicate securely, encrypting messages with the 

Session Key and signing them with OTP. A summary of all messages exchanged 

during the authorization and authentication processes can be seen in Figure 7. 

 



 

Figure 6 - Authentication process 

 

 

Figure 7: Messages exchanged between components during authentication and 

authorization processes. 



4.2 

Framework 

EdgeSec Framework expands and evolves the original EdgeSec architecture 

and protocol described within section 4.1. To achieve the desired flexibility, some 

logical changes were needed on the protocol algorithm, and some new concepts 

were introduced in the architecture. 

4.2.1  

Objectives and Use cases 

The goal of the framework is to be a flexible and extensible security solution 

for ContextNet and Mobile-Hub middlewares, allowing the use of different 

protocols and algorithms in communications between devices. These middlewares 

are usually used in different types of IoT applications, and many would benefit from 

having an improved level of security such as the one provided by EdgeSec 

framework. Some examples of use cases are: 

• Smart Cities, where sensors are distributed across a vast area, and data is 

collected through mobile phones that move throughout the city. This might 

include sensitive and private data, so the framework could ensure privacy 

and protection to users and administrators. 

• Smart Hospitals, where different sensors can be spread around a hospital 

facility, collecting data about patients and doctors. Because medical records 

are always sensitive information, the framework could be integrated to a 

smart hospital application to ensure data security. 

• Industry 4.0, where many sensors can be installed around the industrial plant 

and integrated with the machinery. This type of application can be critical 

because edge devices can sometimes control the operation of very important 

machines and processes. If a malicious hacker gets control of these assets, 

an attack could cause great economic and physical impact. EdgeSec 

Framework could be integrated into the software that controls the IoT 

sensors to ensure the safety needed and protect against attacks. 

From these examples, we can see that the framework should allow integration 

with a wide range of IoT systems and to be compatible with devices used in different 

sectors. To enable this flexibility, the framework is designed to accept different 

types of plugins that can be provided by the user for the framework during 

initialization. Details of how a plugin works are going to be given in section 4.2.2. 

Considering the use cases mentioned above, we can define two types of target 

users for the framework: 

• IoT application developers, who want to enhance security in their 

applications without the need of specific security knowledge. These 

developers can just import, instantiate, and initialize the framework along 

with the desired plugins. 

• IoT devices manufacturers or hardware developers, who want to make their 

devices more broadly compatible by developing plugins for the protocols 

supported by these devices. 



4.2.2 

How it works 

To enable the extensibility and flexibility mentioned before, the framework 

design is divided into three main components: 

• Framework core: responsible for executing the main algorithm to create 

the security mechanisms. It runs on Mobile-Hub, which is connected both 

to the cloud servers and to Smart Objects and have a larger processing 

power. 

• Framework authorization server: responsible for storing the 

cryptographic keys and registration of each supported device. It receives 

authorization requests from the mobile gateways, authorizing or blocking a 

connection. It runs on a processing server in the cloud. 

• Protocol specific plugins: plugins that implement interfaces defined by the 

framework to ensure a specific protocol can be used by the core in its 

algorithms. These plugins are divided into three types: authentication, 

cryptography, and transport. 

The framework core runs the same protocol that was proposed in the original 

architecture, and explained in section 4.1, with the difference that it generalizes and 

abstracts all protocol specific parts into external plugin function calls, and it adds a 

handshake process to allow cipher negotiation. This negotiation was designed to be 

similar to a standard TLS handshake, and it is described in a high level below: 

1. Mobile-Hub, acting as client, sends the HandshakeHello message 

containing its ID, version of the Framework, and a list of which protocol 

suites it supports, in a preferred order. The suites supported by Mobile-Hub 

will depend on the plugins available during initialization of EdgeSec 

framework. 

2. Smart Object, acting as server, sends the HandshakeResponse as response, 

containing its ID, and the selected protocol suite. If it does not support any 

of the protocol suites, it ends the connection. 

3. Mobile-Hub receives and parses the response, storing the selected protocol 

suite that should be used. 

The authorization server should also be connected to a database to store 

essential information used during authorization and authentication processes. This 

information includes: 

• List of each smart device registered in the application. 

• A secret private key known only to the authorization server and used to sign 

data. 

• List of authentication keys for each of the registered devices. 

• List of encryption keys for each of the registered devices. 

• List of mobile gateways that are authorized to connect to each of the 

registered devices. 



• List of all protocols supported by the plugins used in the application. 

Upon receiving an authorization request through the internet, the server will 

fetch the required information from this database and perform some authorization 

checks. It then prepares a response to the mobile gateway, including the keys and 

other values that are used later during authentication and connection session. This 

is the process described in section 4.1.3. 

Lastly, plugins should implement one of the three interfaces provided by the 

core: 

• ITransportPlugin: interface for plugins that implement a WPAN 

communication protocol, such as BLE, Bluetooth Classic, and Zigbee. 

• IAuthenticationPlugin: interface for plugins that implement cryptographic 

hashing function and digital signing algorithms, such as HMAC-MD5, 

HMAC-SHA1, and DSA-SHA256.  

• ICryptographicPlugin: interface for plugins that implement symmetric 

encryption algorithms, such as RC4, AES, DES. 

Each of these interfaces define functions that are used by the Framework Core 

during the EdgeSec security algorithm. These functions are strongly tied to how the 

algorithm works, and the steps taken to authorize and authenticate a device. 

However, they are generic, and can be implemented using different protocols and 

techniques. Each plugin should have an ID that uniquely identifies the protocol 

implemented by it. A protocol suite is a string code composed of the three plugin 

IDs for each protocol concatenated together. An example for a suite that uses BLE 

as TransportPlugin, HMAC-MD5 as AuthenticationPlugin and RC4 and 

CryptographicPlugin would be “BLE_HMAC-MD5_RC4”. 

In the following sections we present code snippets detailing the content of 

each interface, with brief comments for each function. These interfaces are written 

in Kotlin programming language because a test implementation was made in Kotlin. 

However, some language-specific details can be ignored, and the same interfaces 

can be reproduced in any other programming language. 

4.2.3 

ITransportPlugin 

The transport interface has many references to Observable keywords. This is 

a data type available in Kotlin to make use of the Observable design pattern. These 

data types represent an asynchronous emitter, an object that emits a certain primitive 

value continuously in an asynchronous way, which is the usual behavior of a 

communication protocol. 

 

 

 

 

 



 

interface ITransportPlugin { 
 
    /* Returns ID of protocol implemented by plugin */ 
    fun getProtocolID(): String; 
 
    /* Scan for nearby compatible devices using a transport protocol */ 
    fun scanDevices(): Observable<String>; 
 
    /* Tries to connect with a device using a transport protocol */ 
    fun connect(deviceID: String): Observable <Boolean>; 
 
    /* Verifies if device is compatible with EdgeSec framework */ 
    fun verifyDeviceCompatibility(deviceID: String): Observable <Boolean>; 
 
    /* Sends the handshakeHelloMessage to device */ 
    fun sendHandshakeHello(deviceID: String, data: ByteArray): Observable <Boolean>; 
 
    /* Reads the handshakeResponse from device */ 
    fun readHandshakeResponse(deviceID: String): Observable <ByteArray>; 
 
    /* Sends hello message to device */ 
    fun sendHelloMessage(deviceID: String, data: ByteArray): Observable <Boolean>; 
 
    /* Reads the HelloMessageResponse from device*/ 
    fun readHelloMessageResponse(deviceID: String): Observable <ByteArray>; 
 
    /* Reads data from device */ 
    fun readData(deviceID: String): Observable <ByteArray>; 
 
    /* Writes data to device */ 
    fun writeData(deviceID: String, data: ByteArray): Single<Boolean>; 
 
    /* Terminates connection with device */ 
    fun disconnect(deviceID: String); 
} 

4.2.4 

IAuthenticationPlugin 

interface IAuthenticationPlugin { 
 
    /* Returns ID of protocol implemented by plugin */ 
    fun getProtocolID(): String; 
 
    /* Digitally sign data using provided key with the protocol implemented by plugin */ 
    fun getMACSignature(data: ByteArray, key: Key): ByteArray; 
 
    /* Verify a message authentication code signature */ 
    fun verifyMACSignature(data: ByteArray, key: Key, signature: ByteArray): Boolean; 
 
    /* Generate a hash value using hashing function implemented by plugin */ 
    fun generateHash(payload: ByteArray): ByteArray; 
 
    /* Return size in bytes of the hash generated by hashing function of protocol 
implemented by plugin */ 
    fun getHashSize(): Int; 
} 



 

4.2.5 

ICryptographicPlugin 

interface ICryptographicPlugin { 
 
    /* Returns ID of protocol implemented by plugin */ 
    fun getProtocolID(): String; 
 
    /* Generate a random token using protocol implemented by plugin */ 
    fun generateSecureRandomToken(size: Int): ByteArray; 
 
    /* Generate a secret key */ 
    fun generateSecretKey(seed: ByteArray): Key; 
 
    /* Encrypt data using a provided key */ 
    fun encrypt(plainText: ByteArray, key: ByteArray): ByteArray; 
 
    /* Decrypt data using a provided key */ 
    fun decrypt(cipher: ByteArray, key: ByteArray): ByteArray; 
 
    /* Return size in bytes of the secret key of protocol implemented by plugin */ 
    fun getSecretKeySize(): Int; 
 
} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

Proof of Concept Implementation 

One of the most important aspects of the proposed framework is proving its 

utility in real world applications and show it working in practice. This framework 

expanded from the original EdgeSec architecture to allow for more devices and 

protocols to be used. Because of this, it was essential that a few practical tests and 

prototypes were created to compare this framework architecture with previous 

solutions and ensure the project could achieve its goals. In this section we explain 

how the proof of concept was implemented, and in section 6 we go through the tests 

that were made. 

5.1 

Technologies, Hardware, and Environment 

As already explained in section 4, the initial security solution that was base 

for EdgeSec framework was made concrete as an extension of ContextNet and 

Mobile-Hub middlewares. Mobile-Hub 2 runs on Android devices and  is written 

in Kotlin programming language. Naturally, this first prototype of EdgeSec 

framework was also written in Kotlin and developed as an Android Library to 

facilitate its integration with the middleware. 

Mobile-Hub 2 architecture is divided into different layers and services. On 

the base layer, it’s the Core Library, which includes three main modules: (i) S2PA 

Gateway, responsible for managing connection with sensors through WPAN 

technologies, including collecting and writing data; (ii) Connection Gateway, 

responsible for managing connection with upstream servers through WLAN 

technologies, including sending sensor data to the cloud for processing; and (iii) 

MEPA Gateway, responsible for processing complex events flowing through the 

Middleware. On top of the core library is the Mobile-Hub Service, which bridges 

these gateways and its functionalities with the top-level layer. And in the top-level 

layer it’s the Mobile-Hub Configurator, responsible for configuring and integrating 

Mobile-Hub with application layer apps. 

Because EdgeSec Framework focuses on creating security mechanisms on 

WPAN communication, its integration with Mobile-Hub 2 was done inside the 

S2PA Gateway module. S2PA provides a WPAN programming interface for 

interacting with sensors through different WPAN technologies in a transparent way.  

To use a new protocol, we just need to implement the interface and import it inside 

S2PA configuration. 

This was the method used for incorporating EdgeSec Framework. We 

implemented the S2PA’s WPAN interface in a new module called EdgeSec-WPAN. 

Inside this module, the Framework code and all its plugins were initialized, creating 

an abstraction layer between S2PA and real WPAN technologies such as BLE. 

Figure 8 shows the architecture of Mobile-Hub 2, including the integration of 

EdgeSec Framework. 



 

The prototype code was divided into three different parts, following the same 

logic division of the framework concept: core, plugins, and authorization server. 

For the core, a Kotlin library consisting of a few different modules was developed. 

The intention was to create a single deliverable file, such as a Java Archive (JAR), 

that can be imported and incorporated inside another Android project.  

For plugins, the same idea was applied, where different libraries were 

implemented for each of the different types of plugins. In this case, because there 

was a prior implementation of EdgeSec using BLE, MD5 and RC4 algorithms, 

these same protocols were used to implement each plugin. An additional plugin was 

implemented using SHA1 to prove the use of multiple protocols and compare 

results. 

As for the authorization server, it was developed as a separate Kotlin module, 

that ideally should be executed in a remote server that would be connected to the 

framework core code through a network. However, to simplify the development and 

facilitate testing, this code was implemented as an isolated module, also running on 

an Android device. 

Figure 9 shows a class diagram of the prototype implementation. In  Appendix 

I, each part of the diagram is shown separately to help understanding the different 

modules in more detail. 

After the implementation of the framework, the next step was to incorporate 

and use it inside Mobile-Hub. A few small adaptations were needed to make 

EdgeSec Framework compatible with Mobile-Hub’s WPAN interface. JARs for the 

Framework Core and each Plugin were imported and instantiated directly inside the 

middleware code. References for each plugin implementation were provided for the 

framework as reference during initialization and set up. 

Figure 8 - Mobile-Hub 2 architecture + EdgeSec Framework integration 



 

Figure 9 - Class Diagram of the implementation prototype 

To run EdgeSec end to end, an edge device acting as Smart Object was also 

needed. For this, we used an ESP32 microcontroller, that has built-in Bluetooth and 

BLE capabilities. The framework and protocol logic were implemented in C++ 

language and uploaded to the ESP32 memory through Arduino IDE software. We 

used third-party C++ libraries to execute the MD5 and RC4 algorithms. For MD5, 

ArduinoMD5 from Spaniakos [23] and Hash-Library from Stephan Brumme [24]. 

For RC4 and BLE, we used libraries provided by ESP32’s manufacturer 

EXPRESSIF [25]. And for SHA1, tiny-HMAC-c library by kokke [26] was used. 

A few different design patterns were used to create the implementation project 

and architecture. The main one is the Observer pattern, which was mostly used in 

the transport plugin and in the framework core. This pattern is very well suited to 

handle asynchronous communication and methods, which is important for many 

transport protocols, such as BLE. This type of message is used during authentication 

and secure data exchange operations between the mobile gateway and Smart 

Object. Because of this, the Observable data type, which is provided by Android’s 

io.reactivex library, was used to define parameters and return types in the 

ITransportPlugin interface. 

 

5.2 

Practical Challenges 

One of the most important concepts of the proposed framework is the 

flexibility of using different security protocols and algorithms in a dynamic way. 

As already described in section 4.1, the handshake process provides a way for two 

parties to negotiate the suite of protocols that are going to be used in the 

communication session. 

However, in the prototype implementation, it was not possible to achieve a 

working solution for the handshake negotiation within the project’s deadline. This 



is a complex implementation, where some additional information such as the 

number of bytes for each protocol suite needs to be sent and parsed in a dynamic 

way. Despite doing some basic tests and designing the negotiation as pseudo-code, 

we could not have a full implementation in time. 

As mentioned in section 4.1, the protocol negotiation is not necessary for the 

functioning of the security solution, and it was left as an opportunity for future 

work. As a workaround, it was decided to store the protocol suite supported by each 

device in the Authorization server, together with other registration data. During the 

authorization process, the server can select a protocol suite during runtime and 

return it to the Mobile Gateway as part of the authorization response. Because of 

this, during the Handshake messages, only IDs need to be exchanged, facilitating 

the implementation. 

Another practical challenge faced in the prototype implementation was the 

development of the Authorization Server itself. EdgeSec architecture expects this 

component to be a server in ContextNet core, that can be connected to Mobile-Hub 

securely through the internet. Achieving this meant setting up a new processing 

server, developing code specific to this type of server, setting up a gateway on 

ContextNet core, and establishing a secure VPN or TLS connection.  

All these steps were not the focus of this project and are not required to make 

EdgeSec framework work. Again, to facilitate implementation of this proof-of-

concept, we simulated the authorization server as an isolated Kotlin Module 

running inside Mobile-Hub. This simplified the infrastructure set up and 

communication with the Framework Core. 

 

 

 

 

 

 

 

 

 

 

 



6 

Experimental Results 

6.1 

Performance tests 

Because EdgeSec Framework includes a new architecture, a refactoring, and 

a redesign of the initial security solution, we decided to run performance tests on 

our proof-of-concept implementation. The goal was to measure how these changes 

would impact previous implementations, possibly gaining performance through 

code optimizations, and ensuring it could remain as a viable real-world solution. 

By introducing security mechanisms on top of existing communications, it is 

impossible to completely avoid some performance overhead. The nature of many 

security operations, such as digital signatures and data encrypting, implies 

additional computation, that necessarily increases execution time. However, this 

performance overhead should be proportional to the improvements achieved with 

higher security and cannot create a considerable negative impact in the data flow or 

application behavior. 

To evaluate the performance impact, a detailed profiling of every step in 

EdgeSec’ s algorithm was made. This included measuring the time taken to perform 

each step of the authentication, authorization, and secure data exchange operations. 

These measurements were made using devices with the following hardware: 

• Running Mobile-Hub 2 code:  

o Android 11 Smartphone device 

o 2.3 GHz Octa Core CPU 

o 6GB RAM 

o Bluetooth 5.0  

• Running the Smart Object code:  

o ESP32 Microcontroller 

o CPU Xtensa® Dual-Core 32-bit LX6,  

o 520 KB RAM 

o 240MHz Clock 

o Bluetooth 4.2 

As these tests were made on the prototype implementation described before, 

it is important to highlight that the results obtained are directly related to the 

protocol stacks used. We used two different protocol suites, and ten different 

measurements were made for each suite in EdgeSec’ s code running on Mobile-Hub 

2. The average time taken by each operation was computed separately, and these 

values are shown in Table 1 and Table 2, one for each protocol suite. 

 



 

 

 

 

Table 1 - Profiling of authentication process using BLE-RC4-HMAC-MD5 

 

 

Table 2 - Profiling of authentication process using BLE-RC4-HMAC-SHA1 

 

A comparison between a standard BLE connection, and a secure connection 

with the authentication steps is presented in Table 3 and Table 4, highlighting the 

total overhead of this process. 

 

 

 

Authentication Steps (BLE, RC4, HMAC-MD5) Time average (ms) Standard Deviation

Send handshake hello 26.80 8.49

Read handshake response 28.10 7.18

 Create Hello Message 1.50 0.50

Send Hello Message (in 3 separate BLE messages) 242.60 18.03

Receive Hello Message Response 184.20 13.91

Verify Hello Message 0.20 0.40

Total time to authenticate 483.40 25.64

Authentication Steps (BLE, RC4, HMAC-SHA1) Time average (ms) Standard Deviation

Send handshake hello 25.30 7.81

Read handshake response 47.60 23.35

 Create Hello Message 1.60 0.49

Send Hello Message (in 4 separate BLE messages) 336.80 32.22

Receive Hello Message Response 225.00 2.37

Verify Hello Message 0.40 0.49

Total time to authenticate 636.70 37.98

Table 3 - Summary of authentication process using BLE-RC4-HMAC-MD5 

(BLE, RC4, HMAC-MD5) Time average (ms) Standard Deviation

Standard BLE Connection 1075.20 40.22

Authentication Process 483.40 25.64

Total time to establish secure connection 1558.60 53.20



 

 

Tables 5 and 6 show measurements for the read data operation, which takes 

place after two devices are already authenticated and are exchanging data securely.  

 

 

 

 

 

For the BLE-RC4-HMAC-MD5 suite results from Tables 1, 3 and 5, we can 

see that the default time to connect with a Smart Object is around 1.075 second, and 

the additional overhead created by all operations of EdgeSec is around 483.4ms, 

resulting in an increase of 45% in connection time. Additionally, the time taken to 

read data through BLE is around 86.9ms, with a 3.50ms overhead for verifying 

signature and encrypting/decrypting a message, resulting in a total time of around 

90.4ms for reading or writing data securely, an increase of less than 4%. 

For BLE-RC4-HMAC-SHA1 suite results from Tables 2, 4 and 6, we have a 

similar pattern in results, with the values being slightly higher. 636.7ms of overhead 

for the authentication process, representing an increase of 57% in connection time, 

and 5.10ms of overhead for the read operation, representing an increase of 3%. 

As mentioned before, these numbers are related to the suite of protocols used 

during tests. Each protocol has specific operations and mechanisms used to 

manipulate data, perform calculations, and execute algorithms. These operations 

are intrinsic to how each protocol works, and most of the time it is not possible to 

cut down on the resulting performance overhead. Even if we use protocols that are 

more efficient, and fully optimize the implementation, some parts are not in control 

of the framework code. 

Table 4 - Summary of authentication process using BLE-RC4-HMAC-SHA1 

(BLE, RC4, HMAC-SHA1) Time average (ms) Standard Deviation

Standard BLE Connection 1101.00 47.23

Authentication Process 636.70 37.98

Total time to establish secure connection 1737.70 68.07

Table 5 - Summary of secure read process using BLE-RC4-HMAC-MD5 

(BLE, RC4, HMAC-MD5) Time average (ms) Standard Deviation

Standard BLE Read 86.90 4.06

Verify and decrypt message 3.50 1.75

Total time to secure read 90.40 5.00

Table 6 - Summary of secure read process using BLE-RC4-HMAC-SHA1 

(BLE, RC4, HMAC-SHA1) Time average (ms) Standard Deviation

Standard BLE Read 156.10 3.91

Verify and decrypt message 5.10 2.39

Total time to secure read 161.20 3.89



A great example of this is the BLE protocol, where we need to wrap messages 

into BLE Characteristics and group them into BLE Services. In EdgeSec 

Framework, we created a security service to group all messages related to 

authentication and data exchange algorithms. If we look at the Standard BLE 

Connection time from the performance tests, that took 1.075 second on average, 

more than 80% (852ms) of this was spent validating if both devices have 

implemented the BLE security service. This has a considerable impact on the 

overall performance of EdgeSec but could not be avoided when using this protocol 

in this specific set up. 

Another example is the difference between the read operation measurements 

for HMAC-MD5 and HMAC-SHA1 tests. When running tests for HMAC-MD5, 

we got an average of 86.5ms for a standard BLE read, while for HMAC-SHA1 tests 

we got an average of 156.10ms for the exact same operation. This difference might 

be the result of various factors, such as other background tasks running on the test 

devices, the BLE connection latency, or the wireless signal strength. These are all 

factors that are not related to the authentication protocols, and we cannot directly 

control. 

Comparing to previous works that served as foundations to EdgeSec, these 

measurements represent an improvement from older tests, with lower execution 

times for each step of the algorithm. However, the general trend was maintained, 

leading to the same conclusions in terms of performance, as will be discussed in 

section 6.2. 

6.2 

Results 

From the results shown in section 6.1, we can see that there is a considerable 

overhead for connecting and authenticating two devices, while the overhead for 

exchanging data securely between them is negligible. During a communication 

session, a connection operation usually happens only once, while data exchange 

operation can happen multiple times. This indicates that the longer a session is, the 

lower the total overhead imposed by the Framework. Because of this characteristic, 

the requirements of the IoT system and application need to be considered when 

evaluating the performance impact. 

For applications that do not require frequent connections and disconnections 

between devices, or that are not especially time sensitive (i.e., 500ms overhead 

during connection does not affect application behavior), EdgeSec can hugely 

improve security without significant performance costs. Some examples are: 

• Environmental monitoring: IoT devices that are used to monitor various 

environmental parameters such as air quality, temperature, humidity, and 

more. 

• Asset tracking: Tracking systems that use IoT devices to monitor the 

location and state of valuable assets such as vehicles, equipment, or food. 

• Agricultural monitoring: IoT devices deployed in agricultural fields to 

monitor soil moisture levels, humidity, etc. 



• Energy monitoring: Devices deployed to homes, buildings, and industrial 

facilities to monitor energy consumption, analyzing usage patterns, and 

optimizing energy distribution. 

These are all use cases that would take great advantage of having security 

mechanisms enforced in the operation and exchange of data. And depending on how 

devices are deployed in the architecture, the overhead of EdgeSec would not have 

a significant impact. 

On the other hand, applications that have a high demand for 

connection/disconnection operations or that are very time sensitive, might present 

some challenges when using EdgeSec. As we could see from the experiments, most 

of the time is spent performing operations that are part of underlying protocols, such 

as BLE. While these operations are not part of the framework core, they are required 

for the solution to work.  

As a result, in time sensitive applications, the choice of which protocols to 

use may directly impact the performance overhead of the framework, determining 

if the impact it is acceptable or not. Examples of this type of application are: 

• Autonomous vehicles: Smart vehicles packed with embedded IoT devices 

rely on real-time connectivity to exchange data with each other and cloud 

systems, making sure traffic is synchronized and capturing any external 

input instantaneously. Delays in connection time can have severe 

consequences, affecting safety, navigation, and decision-making 

capabilities. 

• Telemedicine: IoT devices used for remote patient monitoring and other 

medical applications require real-time connectivity to transmit vital 

information, and any delay could represent a risk to patient’s health. 

• Industrial Automation: IoT systems in industrial automation, such as 

manufacturing processes or robotics, require fast and reliable connections. 

Delays in connection time can disrupt the synchronization of devices, 

leading to production line bottlenecks, quality issues, or safety risks. 

 

6.3 

Opportunities for improvements and future work 

As was already discussed here, there were a few gaps in the prototype 

implementation that could be addressed in future work to create a more complete 

and coherent solution. The first one is running the authorization server on a separate 

machine, establishing a connection with Mobile-Hub through the internet. This 

would mean an additional performance cost that should be evaluated in the results 

analysis. 

The second gap is the protocol suite negotiation during the handshake 

process, which would transform EdgeSec Framework into a fully dynamic and 

flexible solution, allowing it to be used with a larger number of devices. It could 

facilitate and accelerate the process of pre-registration, creating less constraints and 

more adaptability to new scenarios. This improvement is very important to extend 



the usability of this solution and encourage more users to adopt the security 

framework without considerable friction or efforts. 

In terms of experiments, there would be important to test the framework with 

a wider range of plugins and protocols, making it possible to better evaluate and 

understand the bottlenecks that are part of the framework implementation, and the 

ones that are particular to specific plugins. With more data coming from more 

detailed and diverse experiments, we can act to refactor and improve the 

Framework architecture, algorithm, and implementations, turning it into a better 

solution. 

Additionally, based on the results analysis where we have a higher cost for 

frequent connections and disconnections, there is a strong opportunity for 

improving the performance of this solution by introducing caching mechanisms. To 

reduce the amount of connection operations, the same session key could be re-used 

across different connections.  

This could be achieved by determining a certain amount of time for a session 

to expire. During that time, a session key remains valid. If two devices that have 

previously being authenticated connect again with each other, they could verify and 

re-utilize the same session key, avoiding a complete authentication and 

authorization process. This would greatly improve the performance overhead cost, 

and it is relatively simple to implement. 

Lastly, because the framework increases the capabilities of Mobile-Hub and 

extends the original implementation of EdgeSec into a more complete and adaptable 

solution, it opens the possibility for future works. This may include: 

• Improvements to the EdgeSec algorithm itself, introducing new and more 

modern security mechanisms. 

• Use of Software Defined Networks (SDNs) to increase control and 

management of devices, security keys, and connections. SDNs may replace 

some parts of the architecture, giving more control, visualization, and fine-

grained control to specific configurations of the network. 

• Possibility of authenticating two Smart Objects together, using the Gateway 

as an intermediate node that establishes the secure connection through 

individual session keys. 

• Extend the functionalities of each protocol interface, adding more 

capabilities and customization to each plugin implementation. 

All these possibilities may be implemented in a way that is transparent for 

client applications, leveraging the concept of the framework abstraction. By just 

updating EdgeSec to a new version, it could bring new features and functionalities 

to the IoT system, without the need to change any of the client app source code. 
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Conclusion 

EdgeSec Framework was proposed as an evolution of previous works that 

aimed at providing a security solution for IoT applications. These past works were 

developed and made concrete in the context of ContextNet and Mobile-Hub 

middlewares, creating multiple security mechanisms that ensured authentication, 

authorization, integrity, and confidentiality to data exchanged within a system.  

However, these previous works lacked flexibility features, making it difficult 

to integrate new devices or protocols into the architecture. The main goal of this 

project was to transform these solutions into a complete security framework that 

could be adaptable and extensible, allowing for new security mechanisms to be 

easily incorporated. Additionally, some of the problems and challenges from the 

original implementation needed to be addressed through optimizations and 

refactoring so this security solution could have practical viability. 

The design and development of EdgeSec Framework was successful and 

achieved all its main objectives. This new solution builds upon the foundations 

established in the original security architecture and implementations, addressing 

their limitations and weaknesses, and introducing new concepts and logical 

changes, always focusing on creating a flexible and robust security solution. 

The framework consists of three main components: the framework core, an 

authorization server, and protocol-specific plugins and interfaces. The core executes 

the original EdgeSec security algorithm, with the addition of a handshake process. 

The authorization server defines and stores all the security information involved in 

the algorithm and provides access control capabilities. And the interfaces, organized 

into three different types, provide a common standard for new plugins to be 

implemented, extending the functionality and compatibility of EdgeSec.  

Considering the previous works that EdgeSec Framework builds upon, and 

the context in which this project is inserted, we highlight the following 

contributions: 

• The new handshake process elaborated and integrated into EdgeSec security 

algorithm, enhancing its robustness and adaptability by incorporating a 

protocol cipher negotiation. The handshake strengthens the flexibility of 

EdgeSec, and by extension, the flexibility of Mobile-Hub, allowing devices 

to dynamically decide which protocols are going to be used to communicate 

securely. 

• Three new protocol interfaces were designed, serving as a foundation for 

incorporating new protocols into the solution through the implementation 

of plugins. By defining standardized interfaces, the framework enables 

seamless integration of various protocols that can be used in the algorithm, 

without the need of changing any code on the framework core 

implementation, improving flexibility and extensibility. 

• The original EdgeSec implementation for Mobile-Hub 1 was completely 

refactored into a new highly optimized version for Mobile-Hub 2. This 

significantly improved the performance and efficiency of the solution, 



which achieved way more acceptable results in tests and practical 

experiments. 

Despite some challenges faced during the prototype implementation, 

including the incomplete handshake process, and the simulation of an authorization 

server as an isolated module within Mobile-Hub, the proof of concept demonstrated 

promising results. The overhead for connecting and authenticating devices is 

somewhat considerable, while the overhead for secure data exchange is negligible. 

This indicates that, in some cases, the framework can bring many benefits from the 

enhanced security, with minimal performance impact, but this will heavily depend 

on the type of application. 

Future work should address the gaps in the prototype implementation to 

facilitate the use of EdgeSec Framework in real world applications. This includes 

running the authorization server on a separate machine to establish a connection 

through the internet, complete the implementation of the handshake process, 

expanding the compatibility with unknown edge devices, and implementing a 

caching mechanism for reusing session keys and reducing performance overheads. 

Further experiments with a wider range of plugins and protocols are also necessary 

to identify additional points of improvements in the framework’s architecture and 

algorithm. 

In summary, EdgeSec Framework was presented in this work as a 

comprehensive security solution for IoT middlewares, evolving and enhancing 

previous implementations to achieve better flexibility, robustness, and extensibility. 

By being incorporated into the many use cases of ContextNet and Mobile-Hub, 

EdgeSec framework can create high levels of security and make these middlewares 

into even more complete solutions for IoMT applications. 

 

 

 

 

 

 

 

 

 

 

 

 



8 

References 

1 F. Dahlqvist, M. Patel, A. Rajko, J.Shulman (22 July, 2019). Growing 
opportunities in the Internet of Things. McKinsey & Company. Last 
accessed 25th June 2023: https://www.mckinsey.com/industries/private-
equity-and-principal-investors/our-insights/growing-opportunities-in-
the-internet-of-things 

2  Internet Society. The Internet of Things (IoT): An Overview - 
Understanding the Issues and Challenges of a More Connected World. 
Accessed 25 June 2023: 
https://www.internetsociety.org/resources/doc/2015/iot-overview/ 

3  M. Endler, F. Silva, and Silva, “Past, Present and Future of the 
ContextNet IoMT Middleware”, In: Open Journal of Internet of Things 
(OJIOT), vol.4, nr. 1, pages 7-23, ISSN = 23647108, July 2018. 

4  L. Talavera Rios, M. Endler, I. Vasconcelos, R. Vasconcelos, M. Cunha, 
F. Silva e Silva, “The Mobile-Hub Concept: Enabling Applications for the 
Internet of Mobile Things”, In: 12th IEEE Workshop on Managing 
Ubiquitous Communications and Services (MUCS 2015) 

5  M. Endler, A. Silva, and R. Cruz, “An Approach for Secure Edge 
Computing in the Internet of Thing”s. In: 2017 1st Cyber Security in 
Networking Conference (CSNet), October 2017. 

6  G. Cantergiani. Implementação da arquitetura de segurança EdgeSec 
para os Middlewares de IoMT ContextNet e Mobile-Hub. Projeto Final 
de Graduação, Departamento de Informática - PUC-Rio, June 2020. 

7   W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge Computing: Vision and 
Challenges," in IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-
646, Oct. 2016, doi: 10.1109/JIOT.2016.2579198. 

8  "Personal Area Network." Wikipedia, Wikimedia Foundation, 24 June 
2023, en.wikipedia.org/wiki/Personal_area_network. Accessed 7 Jun. 
2023. 

9  “Bluetooth Technology Overview”. Bluetooth Special Interest Group. 
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/. 
Accessed 8 June 2023. 

10  K. Townsend. “Introduction to Bluetooth Low Energy”. Adafruit Learning. 
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gap. 
Accessed 8 June 2023. 

11  K. Townsend. GATT | Introduction to Bluetooth Low Energy | Adafruit 
Learning. https://learn.adafruit.com/introduction-to-bluetooth-low-
energy/gatt. Accessed 8 June 2023 

12  "Message Authentication Code." Wikipedia, Wikimedia Foundation, 5 
Jul. 2023, en.wikipedia.org/wiki/Message_authentication_code. 
Accessed 9 June 2023. 



13 "MD5." Wikipedia, Wikimedia Foundation, 5 July 2023, 
en.wikipedia.org/wiki/MD5. Accessed 9 June 2023. 

14 "SHA-1." Wikipedia, Wikimedia Foundation, 17 Jul. 2023, 
en.wikipedia.org/wiki/SHA-1. Accessed 20 Jul. 2023. 

15  R. Wilton, “Encryption unlocks the benefits of a thriving, trustworthy 
Internet”. Internet Society. 
https://www.internetsociety.org/resources/doc/2021/encryption-
unlocks-the-benefits-of-a-thriving-trustworthy-internet/ Accessed 9 
June 2023. 

16  M. B. Yassein, S. Aljawarneh, E. Qawasmeh, W. Mardini and Y. 
Khamayseh, "Comprehensive study of symmetric key and asymmetric 
key encryption algorithms," 2017 International Conference on 
Engineering and Technology (ICET), Antalya, Turkey, 2017, pp. 1-7, doi: 
10.1109/ICEngTechnol.2017.8308215. 

17 "RC4." Wikipedia, Wikimedia Foundation, 3 Jun. 2023, 
en.wikipedia.org/wiki/RC4. Accessed 9 June 2023. 

18  "One-Time Password." Wikipedia, Wikimedia Foundation, 6 Apr. 2023, 
en.wikipedia.org/wiki/One-time_password. Accessed 10 June 2023. 

19  J. Pacheco and S. Hariri, "IoT Security Framework for Smart Cyber 
Infrastructures," In: 2016 IEEE 1st International Workshops on 
Foundations and Applications of Self* Systems (FAS*W), Augsburg, 
Germany, 2016. 

20  M. Bagaa, T. Taleb, J. B. Bernabe and A. Skarmeta, "A Machine 
Learning Security Framework for Iot Systems," in IEEE Access, vol. 8, 
pp. 114066-114077, 2020. 

21  S. Sridhar and S. Smys, "Intelligent security framework for iot devices 
cryptography based end-to-end security architecture," 2017 
International Conference on Inventive Systems and Control (ICISC), 
Coimbatore, India, 2017. 

22  R. -H. Hsu, J. Lee, T. Q. S. Quek and J. -C. Chen, "Reconfigurable 
Security: Edge-Computing-Based Framework for IoT," in IEEE Network, 
vol. 32, no. 5, pp. 92-99, September/October 2018 

23 ArduinoMD5, Spaniakos | Github. 
https://github.com/spaniakos/ArduinoMD5 . Accessed 10 April 2023.  

24 Hash-library, Stephen Brumme | Github. 
https://github.com/stbrumme/hash-library . Accessed 10 April 2023. 

25 ESP32 Overview | Espressif Systems. 
https://www.espressif.com/en/products/socs/esp32/overview. 
Accessed 17 April 2023. 

26  tiny-HMAC-c, kokke | Github. https://github.com/kokke/tiny-HMAC-c. 
Accessed 15 July 2023. 

 



9 

Appendix 

 

Appendix I – Image illustrating each part of the prototype diagram. 

 

Figure 10 - Diagram of Framework Core 

 

 



 

Figure 11 - Diagram of  Interfaces and Plugins 

 

 

Figure 12 - Diagram of Authorization Server/ContextNetCore 


