

Gabriel Brito Cantergiani

EdgeSec – A Security framework for middlewares and
edge devices in the Internet of Things (IoT)

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação
em Informática of PUC-Rio in partial fulfillment of the
requirements for the degree of Mestre em Informática.

Advisor: Markus Endler

Co-Advisor: Anderson Oliveira da Silva

Rio de Janeiro

August 2023

Gabriel Brito Cantergiani

EdgeSec – A Security framework for middlewares and
edge devices in the Internet of Things (IoT)

Dissertation presented to the Programa de
Pós-Graduação em Informática, do Departamento de
Informática of PUC-Rio in partial fulfillment of the
requirements for the degree of Mestre em Informática.
Approved by the Examination Committee:

Prof. Markus Endler
Advisor

Departamento de Informática – PUC-Rio

Prof. Anderson Oliveira da Silva
Co-Advisor

Departamento de Informática – PUC-Rio

Prof. Sérgio Colcher
Departamento de Informática – PUC-Rio

Prof. Alexandre Malheiros Meslin
Departamento de Informática – PUC-Rio

Prof. Hilder Vitor Lima Pereira
UNICAMP

Rio de Janeiro, August 25th, 2023

All rights reserved.

Gabriel Brito Cantergiani

Graduated in Computer Engineering by PUC-Rio (Rio de Janeiro, Brazil) in

2020.

 Bibliographic data

 CDD: 004

Cantergiani, Gabriel Brito

 EdgeSec : a security framework for middlewares and edge
devices in the Internet of Things (IoT) / Gabriel Brito Cantergiani ;
advisor: Markus Endler ; co-advisor: Anderson Silva. – 2023.
 51 f. : il. color. ; 30 cm

 Dissertação (mestrado)–Pontifícia Universidade Católica do Rio
de Janeiro, Departamento de Informática, 2023.
 Inclui bibliografia

 1. Informática – Teses. 2. Segurança da informação. 3. Internet
das coisas. 4. Criptografia. 5. Framework. 6. Edge computing. I.
Endler, Markus. II. Silva, Anderson. III. Pontifícia Universidade
Católica do Rio de Janeiro. Departamento de Informática. IV. Título.

To my family José, Glaucia, Julia, Ana, and Daniela, for all their support

and love during these years.

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

I would like to thank my advisors, Markus Endler and Anderson Silva for all

the great discussions, suggestions, reviews, and overall help in achieving this goal.

I would also like to thank my friends and partners during the Masters Course,

Matheus Leal and Mariana Salgueiro, for making this journey more enjoyable.

Abstract

Brito Cantergiani, Gabriel; Endler, Markus (Advisor); Silva, Anderson (Co-

Advisor). EdgeSec – A Security framework for middlewares and edge

devices in the Internet of Things (IoT). Rio de Janeiro 2023. 51p.

Dissertação de Mestrado – Departamento de Informática, Pontifícia

Universidade Católica do Rio de Janeiro.

The importance of the Internet of Things (IoT) has increased significantly in

recent years, and IoT devices are being used in many different industries and types

of applications, such as smart homes, industrial sensors, autonomous vehicles,

personal wearables, and more. While this brings technology innovation, new user

experiences, and new business solutions, it also raises important concerns related

to information security and privacy. In this work we present EdgeSec Framework,

a new IoT security framework, made concrete as a security solution for ContextNet

and Mobile-Hub middlewares. Its main goal is to extend and improve on an existing

security architecture and implementation, creating a more generic, robust, and

flexible solution that ensures authentication, authorization, data integrity and

confidentiality. The framework was designed with full extensibility in mind by

introducing protocol interfaces that can be implemented by external plugins,

making it compatible to a variety of security algorithms and edge devices. A

complete implementation was developed as proof-of-concept, and performance

tests and experiments were made to evaluate the feasibility of the solution. Results

show that EdgeSec framework can greatly improve the security of Mobile-Hub and

similar IoT middlewares by increasing its compatibility and flexibility, and ensuring

all the basic security protections.

Keywords

Security; Information Security; Internet of Things; Cryptography;

Framework; Bluetooth; Edge Computing;

Resumo

Brito Cantergiani, Gabriel; Endler, Markus; Silva, Anderson. EdgeSec – Um

framework de Segurança para middlewares e dispositivos na Internet

das Coisas. Rio de Janeiro 2023. 51p. Dissertação de Mestrado –

Departamento de Informática, Pontifícia Universidade Católica do Rio de

Janeiro.

A importância da Internet das Coisas (IoT) tem aumentado significativamente

nos últimos anos, e dispositivos IoT têm sido usados em diferentes indústrias e tipos

de aplicação, como casas inteligentes, sensores indutriais, veículos autonomos,

wearables, etc. Apesar deste cenário trazer inovações tecnológicas, novas

experiências para usuários, e novas soluções de negócio, também levanta

preocupações relevantes relacionadas a segurança da informação e privacidade.

Neste trabalho nós apresentamos o EdgeSec Framework, um novo framework de

segurança para IoT desenvolvido como uma solução de segurança para os

middlewares ContextNet e Mobile-Hub. O seu objetivo principal é estender e

melhorar uma arquitetura e uma implementação já existentes para estes

middlewares, criando uma solução mais genérica, robusta e flexível,e garantindo

autenticação, autorização, integridade e confidencialidade de dados. O framework

foi elaborado com foco na total extensiblidade através da introdução de interfaces

de protocolos, que podem ser implementadas por plugins, tornando-o compatível

com uma variedade de algoritmos de segurança e dispositivos IoT. Uma

implementação completa foi realizada como prova de conceito, e testes de

desempenho e experimentos foram realizados para avaliar a viabilidade da solução.

Os resultados mostram que o EdgeSec Framework pode melhorar

significativamente a segurança do Mobile-Hub e diversos tipos de aplicações IoT

através de uma maior compatibilidade e flexibilidade, e garantindo todas as

proteções básicas de segurança.

Palavras-chave

Segurança; Segurança da Informação; Internet das Coisas; Criptografia;

Framework; Bluetooth; Computação Edge;

Table of contents

1 Introduction 11

2 Background and Definitions 13

2.1 IoMT and Edge Computing 13

2.2 WPAN and Bluetooth Low Energy (BLE) 14

2.3 Security Concepts 15

2.3.1 Message Authentication Code (MAC) 15

2.3.2 Symmetric Key Encryption 17

2.3.3 One-time passwords (OTP) 18

2.4 ContextNet and Mobile-Hub 18

3 Related Work 20

4 EdgeSec Framework 23

4.1 EdgeSec Architecture and Protocol 24

4.1.1 Initial Set up 24

4.1.2 First connection and handshake 25

4.1.3 Authorization 26

4.1.4 Authentication 28

4.2 Framework 31

4.2.1 Objectives and Use cases 31

4.2.2 How it works 32

4.2.3 ITransportPlugin 33

4.2.4 IAuthenticationPlugin 34

4.2.5 ICryptographicPlugin 35

5 Proof of Concept Implementation 36

5.1 Technologies, Hardware, and Environment 36

5.2 Practical Challenges 38

6 Experimental Results 40

6.1 Performance tests 40

6.2 Results 43

6.3 Opportunities for improvements and future work 44

7 Conclusion 46

8 References 48

9 Appendix 50

List of figures

Figure 1 - Bluetooth Low Energy Connection Topology 14

Figure 2 - Diagram of how Message Authentication code works 17

Figure 3 - Three components of EdgeSec architecture and its initial set up

data 25

Figure 4: Process of securing a message using the Session Key to

encrypt/decrypt (confidentiality) and OTP to authenticate (authenticity and

integrity). 27

Figure 5 - Authorization process in EdgeSec 28

Figure 6 - Authentication process 30

Figure 7: Messages exchanged between components during

authentication and authorization processes. 30

Figure 8 - Mobile-Hub 2 architecture + EdgeSec Framework integration 37

Figure 9 - Class Diagram of the implementation prototype 38

Figure 10 - Diagram of Framework Core 50

Figure 11 - Diagram of Interfaces and Plugins 51

Figure 12 - Diagram of Authorization Server/ContextNetCore 51

file:///G:/My%20Drive/PUC/Mestrado/Dissertação/Dissertacao%20-%20Rascunho%20-%20Pós%20defesa.docx%23_Toc144849612

List of abbreviations

BLE – Bluetooth Low Energy

HMAC – Hash Message Authentication Code

ID – Identification

IDE – Integrated Development Environment

IDS – Intrusion Detection Systems

IoMT – Internet of Mobile Things

IoT – Internet of Things

JAR – Java Archive

MAC – Message Authentication Code

NFV – Network Function Virtualization

OTP – One Time Password

PAN – Personal Area Networks

POC – Proof-of-concept

RSF – Reconfigurable Security Function

SA – Security Agent

SDN – Software Defined Networks

SF – Security Function

TLS – Transport Layer Security

VPN – Virtual Private Network

WLAN – Wireless Local Area Networks

WPAN – Wireless Personal Area Networks

1

Introduction

The importance of the Internet of Things (IoT) has increased significantly in

recent years, and IoT devices are being used in many different industries and types

of applications, such as smart homes, industrial sensors, autonomous vehicles,

personal wearables, and more. Further growth is expected for the coming years,

with new sensors becoming cheaper, more powerful, and more reliable [1]. This

opportunity may be used to drive technological advancements such as in 5G

networks, Edge Computing and Artificial Intelligence. According to some

projections, the impact of IoT on the global economy may reach $11 trillion by

2025, with more than 100 billion connected devices [2].

While IoT brings technology innovation, new user experiences, and new

business solutions, it also raises important concerns related to information security

and privacy. In today’s connected and digital world, any device that exchanges data

through the internet is exposed to many of the most common threats. This includes

unauthorized access to confidential information, private data breaches and

unauthorized control of devices to perform malicious activities on the internet.

However, because IoT smart devices allow for remote interaction with the

physical world (e.g., smart locks, ambient temperature control, robots, vehicles,

etc.), compromises in their security can pose other types of risks that involve the

physical safety of people and infrastructure. Additionally, the large-scale and

distributed nature of many IoT systems allows for attacks that are potentially very

destructive and can have an enormous impact on internet services.

Traditional information security mechanisms that involve perimeter security

and devices like firewalls and intrusion detection systems, were created without this

new IoT distributed context in mind. The level of protection required by some IoT

systems cannot be ensured using these same security mechanisms. That is why the

massive adoption of IoT in society and industries brings new challenges and the

need for new security solutions aimed at the Internet of Things.

The focus of this research is to define and present a new security framework

for IoT middlewares, which we named EdgeSec Framework. Its development was

made concrete as a solution for improving the security of ContextNet and Mobile-

Hub middlewares [3] [4], and it can be considered an evolution of previous research

on this area. It is built on top of an existing security architecture and algorithm

proposed in the context of the Internet of Mobile Things and Edge Computing,

using it as conceptual foundation [5]. It is also based on a previous implementation

project called EdgeSec, which aimed at creating a practical and functional prototype

of the same security architecture and incorporate it inside Mobile-Hub middleware

[6].

The main goal of EdgeSec Framework is to extend and improve on the

existing EdgeSec implementation, creating a more generic, flexible, and extensible

solution. This should increase compatibility with different IoT devices and enforce

basic security protections on IoT middlewares such as the Mobile-Hub.

Additionally, it also has the goal of (i) refactoring and optimizing previous

implementations of the security architecture; (ii) porting it to new versions of

Mobile-Hub middleware; and (iii) improving performance metrics to create a

feasible, flexible, and practical security solution.

Because Mobile-Hub is a mobile middleware, it can be used for

crowdsensing, by offering connectivity to a wide array of devices, each possessing

varying hardware setups, manufacturers, and network providers. To support this

kind of scenario, the Framework was developed with extensibility was a key

attribute considered by design, allowing for new security protocols and algorithms

to be easily added to the system. This was achieved through the definition of

multiple protocol interfaces and implementation of plugins. Protocol suite

negotiations were also introduced into the main algorithm, together with many other

security mechanisms that ensure authentication, authorization, integrity, and

confidentiality to all data exchanged between devices.

In this dissertation, we first go through some definitions and concepts to give

background information on the proposed solution, which includes Internet of

Mobile Things (IoMT), Edge Computing, Bluetooth Low Energy, essential security

mechanisms, Mobile-Hub middleware and more. Then, in chapter 3 we present

some of the related work on security frameworks for IoT. On chapter 4 we give a

detailed explanation of how the security architecture and algorithm of EdgeSec

works, and how the framework was structured to improve on existing solutions.

Chapter 5 describes a prototype implementation created to prove the concept and

run performance tests. These tests are presented and analyzed in chapter 6, and we

give final remarks and conclusions on chapter 7.

2

Background and Definitions

2.1

IoMT and Edge Computing

The Internet of Things (IoT) describes physical objects with sensors,

processing power, software and other technologies that connect and exchange data

with other devices over communication networks. Because of their embedded

technology, these devices are usually called smart objects, which is how we are

going to reference them in this text. In many traditional IoT systems and

applications, smart objects are stationary, and are built into the physical

infrastructure of homes, offices, roads, etc.

The Internet of Mobile Things (IoMT) is a subset of IoT, where smart objects

may be moved to different locations from time to time, or even move autonomously,

but remain remotely accessible and controllable from anywhere on the internet [2].

IoMT systems commonly includes devices such as mobile phones, vehicles, robots,

and wearables, all of which can have high connectivity and locomotion capabilities.

Some examples of IoMT applications and use cases include smart cities, smart

homes, environmental monitoring, health care, logistics and more.

Another important concept that is related to IoMT is Edge Computing, which

refers to a distributed computing paradigm that brings computation and data storage

closer to the source of where data is generated [7]. In traditional cloud computing

models, data is sent to centralized servers for processing and analysis. In Edge

Computing, computing processing power is moved to the edge of the network

architecture, closer to where the data is generated or consumed. This approach

enables faster response time, reduces latency, and uses network resources more

efficiently.

If we think of the IoMT examples given above, smart objects are great use

cases for how Edge Computing can be leveraged to create more flexible and

resilient applications. Considering that on IoMT systems edge devices are always

on the move, increasing their processing power allows computations to be made

anywhere without relying on fast and stable internet connections. It also allows for

real-time analysis and actions, which are crucial in time-sensitive applications like

autonomous vehicles, industrial automation, or remote monitoring systems.

On the context of IoMT and Edge Computing, there are some applications

that leverage both concepts to extend the capabilities of simple sensors through

more powerful edge devices. Consider a scenario where we have thousands of very

simple sensors, without considerable processing power, generating data. We may

use a more powerful mobile device, to opportunistically discover and connect with

those sensors when nearby, collecting data being generated and transmitting

through the internet for further processing. This is a great example of both IoMT

and Edge Computing concepts being used in practice, and it is very important for

understanding the motivation and goals behind this project, since EdgeSec

Framework was created and developed in the context of this type of system.

2.2

WPAN and Bluetooth Low Energy (BLE)

Personal Area Networks (PANs) are computer networks for interconnecting

electronic devices within a person’s workspace area [8], that is, within a short range

of a few centimeters to a few meters of physical space. Wireless Personal Area

Networks (WPANs) are PANs that transmit information over wireless network

mediums and technologies. Some examples include Zigbee and Bluetooth, with the

latter being the most widely used WPAN.

Bluetooth is a low-power, short-range radio technology that streams data over

79 different channels in the 2.4Ghz frequency band [9]. It can be used by stationery

or mobile devices to exchange data over short distances. Bluetooth Low Energy

(BLE) was introduced in version 4 of Bluetooth core specification, and it is a

different technology designed for very low power operation [10]. This means that

BLE consumes significantly less power than the original Bluetooth, allowing it to

be used by devices with more strict energy requirements.

BLE communication can be established using different configurations and

topologies, and there is a trade-off between energy consumption, latency, number

of connected devices and data transfer rate. BLE architecture divides connected

devices into Central devices, which are usually more powerful mobile phones, and

Peripheral devices, which are small, low-power and resource constrained devices.

A Peripheral device can only be connected to a single Central device at a time, while

a Central device can keep multiple connections simultaneously. Figure 1 illustrates

a connection topology [11].

Considering the roles that BLE defines for each device in a communication

session, it is clear that this is a very suitable technology for the examples of IoMT

and Edge Computing applications mentioned in the previous section. In fact, BLE

is widely used in IoMT systems, where mobile devices act as the Central BLE

device, and sensors act as the Peripheral BLE device. Moreover, BLE scanning

properties and the relationship between Central and Peripheral devices are

properties that make it a perfect technology to implement the opportunistic

discovery of Smart Objects by Mobile-Hubs and Gateways.

Figure 1 - Bluetooth Low Energy Connection Topology

2.3

Security Concepts

There are many different techniques and technologies that can be used to

create security when users or devices are communicating and exchanging data in a

network. In the context of this work, communication is done between devices such

as servers, mobile phones, or smart objects and sensors. In the examples given

below, we are only considering these type of devices as main actors,

In general, we are always aiming to enforce one or more basic security

protections. The ones that are relevant in this project and are covered in some way

by EdgeSec are:

• Authentication: there should be a way to verify if a device identity in a

network is valid, and if it is really who it says it is. If a device tries to

impersonate another by using a fake identity, a proper authentication

mechanism should be able to identify this malicious activity and deny any

type of access or action on the system.

• Authorization: there should be a way to verify if a certain device with a

known identity is allowed to perform certain actions in a system. An

example of authorization is the decision of whether two devices are allowed

to communicate with each other. Another example is allowing or denying

the permission for a certain device to access a certain type of data in a server.

• Confidentiality: when two devices are exchanging messages, there should

be a way to avoid disclosure of the messages’ content from unwanted third

parties. This usually involves some type of encryption to transform the

message in a way that only the two ends of the communication can decrypt

and understand the message, making it unintelligible for others that capture

the messages while it is being transferred.

• Integrity: there should be a way to verify if a message sent through a

network between two devices was not tempered or modified by a third party.

With confidentiality, we assure the encrypted message will protect the data

from being exposed to malicious actors, but we cannot ensure they will not

temper the message. Integrity checks create this type of protection by using

some mechanism that allows us to verify if a message has been modified

during transport.

In sections 2.3.1, 2.3.2 and 2.3.3, some of the mechanisms used in this project

to achieve the security concepts listed above will be mentioned and briefly

explained. This is not intended to be an extensive and complete explanation, as

these are complex subjects that require a more in-depth analysis to be fully

understood. The goal is to present and summarize some of these topics for readers

that are not familiar with, which will make it easier to understand how and why

they are used in EdgeSec.

2.3.1

Message Authentication Code (MAC)

Message Authentication Code (MAC) is a security mechanism used to create

both authentication and integrity protections on a message [12]. This is done by

concatenating a short piece of information (the authentication code) at the end of

the original message, which is used to verify if both the identity of the sender and

the message content are valid.

These protections are achieved because the short piece of information added

to the message must be generated with a security key that only the sender and

receiver should possess. Because both sender and receiver use the exact same key,

this is similar to symmetric encryption, which is going to be further explained in

section 2.3.2.

The sender should use the security key to perform a transformation on the

original message, generating a unique MAC. After receiving the payload, the

receiver will separate the message from the MAC, perform the same transformation

using the same key, and compare both MACs. If they match, it means the message

was sent by the right sender because only they would have access to the key. And

we can also assure the message integrity because any change or tampering on the

message content would result in a different MAC.

In terms of implementation, the transformation mentioned before can be

achieved through different security algorithms. One of the most common, and the

one used in this work, is a cryptographic hashing function. Hashing functions are

one-way, deterministic functions that transform an input of variable length into an

output of a fixed size. Because it is a one-way function, there is no way to reverse

it. In other words, it is very hard to guess the input based only on the output.

Additionally, because it is deterministic, the same input will always generate the

same output. And it´s rare, although possible, for two different inputs to generate

the same output, an event known as collision effect. A good hash function shall

avoid this to occur for inputs with a high correlation between them. For inputs that

have a low correlation between them, it might happen but, usually the inputs will

not belong to the same context, so we expect the system to reject the out of context

input.

These characteristics make hashing functions an ideal implementation for

Message Authentication Code algorithms. The input is usually the concatenation of

the message with the security key. And the output is the MAC that is sent together

with the message. Upon receipt, the receiver can concatenate the message with the

key and perform the hash function again, which should result in the same MAC.

From now on, we will use the acronym HMAC to denote hashing message

authentication code algorithm. Figure 2 illustrates a Message Authentication Code

algorithm using a hashing function.

In this project we use two different MAC algorithms to achieve authentication

and integrity of messages in our proof-of-concept implementation: HMAC-MD5

and HMAC-SHA1. MD5 is a type of hashing function that, despite not being the

most secure and presenting some vulnerabilities, was preferred due to lower

computational requirements, allowing it to run smoothly on low power devices. It

generates a 128-bit output and was designed by Ronald Rivest in 1991[13]. SHA1

is another very popular type of hashing function that produces a 160-bit output and

was designed by the United States National Security Agency [14]. It is stronger than

MD5, but still not recommended for production use today due to known

vulnerabilities. These two algorithms were chosen because of the many available

open-source implementations for low power devices, which is not the case for more

modern and advanced MAC algorithms.

Figure 2 - Diagram of how Message Authentication code works

2.3.2

Symmetric Key Encryption

Data encryption is the foundation for protecting data on the internet. Because

we exchange messages through the internet’s public infrastructure on a global scale,

a security mechanism to hide the content of what is being transferred is essential to

many modern services, such as texting, online banking, e-commerce, and more.

[15]

For this work, data encryption is used to achieve confidentiality in messages

exchange between devices. More specifically, we use symmetric key cryptography,

which is when the sender and receiver share the same cryptographic key. This same

key is used to both transform plain text into cipher text and revert cipher text back

to plain text. This contrasts with asymmetric cryptography, where there is a pair of

public and private keys to generate unique secrets to each side of the

communication.

There are two types of symmetric cryptography, with stream ciphers or block

ciphers. In stream ciphers, the bytes are encrypted sequentially one by one. On

block ciphers, blocks of bytes are encrypted as a whole one by one. Each algorithm

uses a different number of bytes in each block. In this project, only stream cipher

will be used.

The advantage of using symmetric key cryptography is because it is faster

and lighter than asymmetric cryptography. This makes it way more accessible,

allowing it to be used in simpler devices with smaller memory size and low

processing power, such as IoT sensors. The most important disadvantage is the fact

that both sender and receiver need to agree on a unique secret key, which can be

complex when managing many devices communicating in the same system [16].

In our proof-of-concept implementation, we use RC4 as the symmetric key

cryptography algorithm of choice. It is also not considered the most secure

nowadays and presents many vulnerabilities. However, it is remarkably simple and

fast, being a great choice for a POC with low-powered devices. It was also designed

by Ronald Rivest, in 1987 [17]. Similarly to the MAC algorithms, RC4 was one of

the few algorithms were we can easily find open source implementations for low-

power devices. More advanced and secure algorithms lack this type of support.

2.3.3

One-time passwords (OTP)

Passwords and secrets are used across systems and algorithms to enforce data

authentication, authorization, confidentiality, and integrity. Depending on the

application and use case, always using the same password multiple times can be

considered a vulnerability. Because of this there is a security mechanism called

One-time password (OTP), where we only use a password for a single operation or

transaction. A new password should be used for subsequent operations, avoiding

attacks that replicate past states [18].

There are different types of OTP algorithms, including:

• Based on time-synchronization, where two parties synchronize their

clocks and generate a unique code based on the current timestamp and

a shared secret key.

• Based on hash-chains, were new OTP values are based on previous

ones, creating a chain of passwords that only the two parties can agree

on.

• Based on challenge-response, where one party should provide a

response to a challenge from the other party.

OTPs are widely used in many internet services to establish two-factor

authentication, where a user typically stores the shared key in a personal device and

inputs a newly generated code every time it wants to re-authenticate [18].

In this project, we use OTPs to enhance the security of communication

sessions between devices. Every time a Mobile-Hub and a smart object try to

authenticate with each other, a new OTP is generated, ensuring that old

communication sessions are invalid, and that new keys should be used.

2.4

ContextNet and Mobile-Hub

ContextNet is an IoMT Middleware that provides context services for wide

and large-scale pervasive applications [6]. Its singular feature is that it employs

mobile smartphones as hubs for discovering and connecting smart edge devices to

the upstream servers on the internet. Some use cases are remote monitoring,

coordination of a network of drones, management of Bluetooth sensors in modern

hospitals and smart cities.

ContextNet’s main component is the ContextNetCore, a network of servers

running in the cloud that are responsible for providing the communication and

context distribution capabilities. The Core is composed of many different

processing servers that are used for different purposes, and cloud gateways that

connect these inner processing nodes to external devices. It is extensible and

flexible, allowing for new services and software modules to be implemented and

integrated as new nodes inside the Core.

 Mobile-Hub is another IoMT Middleware that runs on Android devices and

is used as a mobile gateway and hub within the ContextNet architecture [3]. This

Middleware serves as a bridge between simpler edge devices that do not have

internet capabilities to communicate with ContextNetCore processing nodes and to

send and to receive data over wide range internet protocols and local area protocols.

 Mobile-Hub was also designed to be a flexible and extensible middleware.

Its architecture facilitates the integration of new technologies for WPAN and

WLAN communication. By leveraging the use of generic interfaces and

implementing new drivers and custom configurations, we can easily introduce new

devices to the system. New configurations can also be retrieved from upstream

servers, without having to prepare the application for all types of devices that it may

encounter. This means that Mobile-Hub can be extended dynamically, during

runtime. A new version of Mobile-Hub, known as Mobile-Hub 2, introduced a new

code architecture and technology stack. Most of the mentioning to Mobile-Hub in

this document will refer to version 2.

 The reason for citing these two Middlewares as background is because they

served as a motivation for creating the EdgeSec framework. Despite the conceptual

idea behind the framework being generic and flexible, ContextNet and Mobile-Hub

were used as test cases for developing and proving the usability of this security

solution, as we are going to show on the proof-of-concept implementation chapter.

These Middlewares represent the type of application that EdgeSec framework aims

at supporting and will be used as example throughout this document to illustrate

some of its features.

3

Related Work

As expected, due to the widespread use of IoT systems and the importance of

security in today’s connected world, there is a considerable amount of related work.

This is especially true if we analyze security in a broad way, including server-side

security, client-side security, network security, hardware security, and more. To

narrow down the scope of the works related to this one, we are going to focus solely

on security frameworks aimed at IoT systems. Other types of IoT security solutions

that are not designed as frameworks will not be considered.

In my research for related work, I observed a pattern for types of security

framework solutions that could be separated into two kinds of approaches:

frameworks for detection and modelling of security threats, and frameworks for

prevention against security attacks. Apart from some specific exceptions, most of

the work I found could fit into one of these two groups. Each group of solution

target different ways in which an IoT system can be protected from malicious

activities.

For the first group, it is common to see an intersection between security and

Machine Learning techniques. This type of solution uses Artificial Intelligence

strategies to detect and model viruses and other types of attacks.

An example of this kind of solution was proposed in the “IoT Security

Framework for Smart Cyber Infrastructures” paper, where the authors present a

security framework for IoT applications in smart infrastructures, such as smart

homes and smart buildings [19]. The framework utilizes intrusion detection systems

(IDS) to continuously monitor the network and collect data from sensors in order

to detect any unusual activity within the IoT environment. This data is used to

identify specific sensors and compare their behavior to expected patterns. The

framework categorizes any attack that gets detected based on the type of abnormal

behavior, taking appropriate recovery measures, such as re-authenticating the

sensor, discarding sensor data, or modifying the network configuration.

There is another example that builds on top of the work just mentioned, and

it follows the same paradigm of using AI to detect knowledge-based and anomaly-

based attacks [20]. It has a strong focus in using Software Defined Networks

(SDNs) and Network Function Virtualization (NFV) technologies to increase

control over the IoT network and enhance the ability of detecting and reacting to

attacks.

It also proposes a security framework in which IoT devices are part of a

network architecture controlled by SDNs/NFVs controllers that actively monitor

the activity using Machine Learning algorithms to detect anomalies and launch

mitigation actions in a closed loop.

The two frameworks mentioned above use a reactive approach, detecting and

acting on attacks that are already under way. The other type of related work, which

is the one where EdgeSec fits in, is usually associated with a software tool, service,

or protocol that can be integrated into an IoT system architecture to prevent exploits

from happening in the first place. It is a strategy of creating safeguards that ensure

authenticity, integrity and/or confidentiality to data, with the cost of introducing

some overhead and additional processing.

The paper written by S. Sridhar is an example of this second type of related

work, which is very similar to EdgeSec in terms of general concept and structure,

considers an architecture of edge devices, mobile gateways, and cloud servers, and

it uses encryption and session keys to protect all data in transit [21]. It requires

devices to be previously registered in a centralized database, or Master Key

Repository, to securely authenticate elements of the communication. This creates a

protection against malicious devices that try to impersonate others and send fake

messages.

However, it differs from EdgeSec in a few ways. It uses asymmetric

cryptography algorithms, which cannot be supported by some types of devices, and

does not verify data integrity on every message exchanged. Most importantly, it

does not provide full flexibility to change the cryptographic algorithms.

The work done by R. Hsu is the most closely related to EdgeSec in terms of

goals, scope, and security strategy [22]. It also recognizes the fact that many related

projects only offer basic security protection, and fail to overcome the challenges of

device heterogeneity, key management complexity, and computational power

scarcity on the same IoT system.

This work addresses these issues by proposing a reconfigurable framework

that focuses on edge computing, called Reconfigurable Security Framework for IoT

(ReSIoT). This is done through the introduction of a security agent (SA), which is

an edge device with more processing power dedicated to handle cryptographic

algorithms and reduce the computation cost on other edge devices. These other edge

devices only need to keep a security key to communicate with the SA.

The SA is responsible for managing and distributing keys to nearby devices

through a global key management system, and it inherits the protection mechanisms

of the underlying protocol communication layer. The goal is to ensure the basic

security requirements of confidentiality, integrity, availability, and non-repudiation.

These are classified as security functions (SFs), which are handled solely by SAs.

The ReSIoT architecture includes three main layers: (i) connectivity,

consisting of network protocols such as BLE, UDP, MQTT, and TLS; (ii) security

and resource layer, which is where the SA sits, and where it performs SFs; and (iii)

application layer, consisting of application resources on server and client level.

They also define Reconfigurable Security Functions (RSFs), which is a protocol

that can be thought of as a middleware used to perform the security algorithms and

fulfill the SFs.

Although ReSIoT solves many of the issues that are open on other works

described here, there are still some scenarios where EdgeSec can offer a better

solution. In particular, adding an extra device to work as a security agent is not

practical or even possible in many IoT Systems, such as applications that require a

very large number of edge devices distributed across a wide area. Another important

consideration is that ReSIoT does not use a concrete implementation for RSFs,

which can vary a lot depending on the device and operating system it is running on,

as well as which security operation is required in each communication.

Section 4 shows that EdgeSec differs from that approach by ensuring the same

security requirements without an extra device to run as security agent. We aim for

a specific type of IoT architecture, where a mobile gateway is always present in the

edge near sensors. We can leverage these mobile gateways to serve as main security

agents, with the advantage of its mobility to cover wide areas and a large number

of sensors. Additionally, EdgeSec provides a solid implementation of its core

capabilities, and proposes new security mechanisms that consider computational

power limitations, so that these operations can be performed end to end, including

on edge sensors, mobile gateways, and cloud servers.

4

EdgeSec Framework

Before explaining how EdgeSec framework works, it is important to go

through how it was conceived and the foundations behind it. The general

architecture and security algorithm used by the framework was first proposed in

[5]. In this work, the authors created a security solution aimed at IoT systems, with

special focus on edge devices and edge computing.

The main goal of this solution is to achieve data integrity, authentication,

confidentiality, and access control on a decentralized and heterogeneous IoT

network. The architecture considers a system of three main components: (i)

processing servers on the cloud; (ii) mobile devices acting as gateways; and (iii)

edge devices or sensors that generate raw data. A security protocol for establishing

a secure connection between mobile gateways and edge devices is presented as part

of the solution.

The authors also describe a threat model for this type of architecture and IoT

environment. They arrange threats into two distinct groups: threats to the operation

of entities of the IoT system; and threats to the communication between entities of

the IoT system. We can assume the same threat model for EdgeSec Framework, and

more details about each threat group can be found in [5].

Both the architecture and the protocol were proposed conceptually and made

concrete as an extension of ContextNet and Mobile-Hub. These middlewares were

used as examples and use cases of how this solution could improve the overall

security of an IoT system.

To prove the concept, a few implementation projects were developed with the

goal of turning this into a functional solution that could be effectively used in real

world applications. One of these projects, named EdgeSec, consisted in

implementing the security protocol inside ContextNet and Mobile-Hub, together

with a microcontroller acting as an edge device [6]. It was executed and tested end

to end, achieving real and practical results. Later, a new implementation project

adapted EdgeSec to Mobile-Hub version 2, improving the performance of the

security algorithm.

Despite being successful in proving that the solution could create a great level

of security for these middlewares, there were a few problems and challenges that

still needed to be addressed in this EdgeSec proof-of-concept implementation. The

most important was regarding flexibility: the code was protocol specific, and would

only work with BLE as WPAN protocol, HMAC-MD5 as authentication and

integrity mechanism, and RC4 as cryptographic algorithm. Any change in one of

these protocols would mean a complete rewrite of the project’s code. Additionally,

the edge device implementation was too hardware-specific, so that any new device

that is to be used within the architecture also required a complete rewrite of parts

of the code.

In order to address these problems, we develop a new solution, proposed here

in this work, called EdgeSec framework. The framework aims to solve the

flexibility problem and achieve a more robust security solution for the ContextNet

and Mobile-Hub 2 middlewares and can be considered an evolution of the original

EdgeSec implementation. Because of this, EdgeSec framework shares the same

foundations of the initial conceptual proposal, including the general architecture

and security protocol. In section 4.1, we will explain in detail how the existing

architecture and protocol works, with minor improvements and changes. In section

4.2, we will explore the main contribution of this project, and how the framework

expanded previous works into a more complete solution.

4.1

EdgeSec Architecture and Protocol

4.1.1

Initial Set up

The architecture can be divided into three components:

i. Edge devices or sensors acting as Smart Objects;

ii. Mobile devices acting as bridges or mobile gateways;

iii. A central processing node acting as an authorization server.

Prior to using EdgeSec, a few data initialization needs to take place:

• The authorization server must store the ID of all Smart Objects that

are part of the system.

• The server should also hold a relation of all mobile gateway/smart

object pair that are allowed to authenticate and communicate with

each other. This is needed to enforce any required access control.

• Each Smart Object must store three security keys: two symmetric

authentication keys, one of them being its own key and the other being

the server`s key, and an encryption key.

• The authorization server must store its own key along with the

authentication and encryption key of all registered devices.

These steps can be set up during a registration process, where each device that

will be part of the system is registered and configured with all keys and data

necessary. This process can be manual or automated. There are plans to create an

automation mechanism, where a batch of devices get all registered at once,

facilitating the use of EdgeSec in large scale systems. This is one of the goals as a

future work for this project. The initial set up is illustrated in Figure 3.

Figure 3 - Three components of EdgeSec architecture and its initial set up data

4.1.2

First connection and handshake

EdgeSec comes into action when a Mobile Gateway finds a nearby Smart

Object and tries to communicate with it securely. When these two devices start the

process of communication, the security algorithm starts. This algorithm can be

further divided into four parts: handshake, authorization, authentication, and secure

data exchange.

Because most WPAN protocols do not support application-level data being

exchanged before a connection is already established, this handshake happens after

a first connection. However, despite being connected, the devices can only

exchange real sensor data after the authentication process is finished. If this process

fails to be completed, the connection is immediately terminated.

The first part of the communication process begins with a handshake between

the Mobile Gateway and Smart Object, where they exchange a few messages to

share their IDs with each other.

In the original security solution, this handshake restricted the two parties to

just sharing their IDs. EdgeSec Framework redesigns and extends the handshake

into a more flexible process, allowing more data to be exchanged, such as

framework version and protocol suite negotiation.

Although the suite negotiation is not strictly needed for the functionating of

the algorithm, it significantly improves its flexibility, allowing for devices to decide

dynamically during runtime which protocols are going to be used in the secure

communication. This negotiation should be similar to how TLS (Transport Layer

Security) negotiates ciphers. Because the implementation of protocol handshakes

can be difficult, an alternative is to store all the protocol suites supported by Smart

Object and Mobile Gateway during registration phase. This way, the Authorization

Server can decide which protocols to use based on the suites supported by each

device, simplifying the handshake process.

After connecting to Smart Object, exchanging IDs, and deciding on which

protocols are going to be used, Mobile Gateway starts a connection with the

Authorization Server through the internet using some type of well-known security

layer, such as TLS or any VPN protocol. This security layer is important to make

sure that data is secured end to end, in all parts of the IoT architecture. It usually

involves key exchange algorithms, digital signing, and digital certificates, as in TLS

protocol. Since there are many reliable, modern, and proven solutions for this type

of security layer, it is out of scope for EdgeSec Framework project.

4.1.3

Authorization

In this step, the Mobile Gateway sends the handshake information (pair of

IDs and negotiated protocol suite) to the Authorization Server to ensure that it can

go forward with this communication. The Server should check in its previously

configured database if the two parties are allowed to communicate. If the result is

positive, the server starts to prepare a response that contains a few different

elements. First, it needs to generate an OTP (One Time Password), which is unique

to each authentication process, with the following equation:

𝑂𝑇𝑃 = ℎ𝑎𝑠ℎ(𝑂𝑇𝑃𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 + 𝑆𝑚𝑎𝑟𝑡 𝑂𝑏𝑗𝑒𝑐𝑡 𝐼𝐷

+ 𝑀𝑜𝑏𝑖𝑙𝑒 𝐺𝑎𝑡𝑒𝑤𝑎𝑦 𝐼𝐷
+ 𝑆𝑚𝑎𝑟𝑡 𝑂𝑏𝑗𝑒𝑐𝑡 𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐾𝑒𝑦)

(1)

Where hash can be any secure hashing function, and OTPChallenge is a

pseudo random 13-bytes positive number.

Another element generated by the server is a random Session Key. After

authentication, when data is being transferred between Mobile Gateway and Smart

Object, the OTP is used as a HMAC signing key to prove the authenticity and

integrity of all messages, and the Session Key is used as a symmetric cryptographic

key to encrypt and decrypt the message content. Figure 4 illustrates this process of

protecting data in EdgeSec.

Figure 4: Process of securing a message using the Session Key to encrypt/decrypt

(confidentiality) and OTP to authenticate (authenticity and integrity).

The server responds to the authorization request by sending back the OTP, the

Session Key, and an authentication package, named PackageK. This package will

later be used by the Smart Object to verify messages, and it follows the equations

below:

𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐾 = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑(𝑂𝑇𝑃𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 + 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐾𝑒𝑦)

(2)

𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

= 𝑂𝑇𝑃 + 𝑆𝑒𝑠𝑠𝑖𝑜𝑛 𝐾𝑒𝑦 + 𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐾 + 𝐻𝑀𝐴𝐶(𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐾)

(3)

Where the encryption key in (2) is the Smart Object Symmetric Encryption

Key, and the HMAC key in (3) is the Authorization Server`s Authentication Key.

The whole authorization process is illustrated in Figure 5.

Figure 5 - Authorization process in EdgeSec

4.1.4

Authentication

After receiving a positive authorization response, the Mobile Gateway is

ready to proceed connecting with the Smart Object. To notify the Smart Object of

the authentication process, and prove its identity, a HelloMessage is sent, which has

the following format:

𝐻𝑒𝑙𝑙𝑜𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐾 + 𝐻𝑀𝐴𝐶(𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝐾)

(4)

𝐻𝑒𝑙𝑙𝑜𝑀𝑒𝑠𝑠𝑎𝑔𝑒

= 𝐻𝑒𝑙𝑙𝑜𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡

+ 𝐻𝑀𝐴𝐶(𝐻𝑒𝑙𝑙𝑜𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡)

(5)

Where the HMAC key in (5) is the OTP from the authorization response.

After receiving this message, the Smart Object starts to validate the

authentication process. For this validation, it needs to re-generate the HMACs using

keys previously stored in its memory and compare with the HMAC received from

the Mobile Gateway. If both the PackageK HMAC and HelloMessage HMAC

match the expected values, the message passes the integrity and authenticity test.

The Smart Object then extracts the OTPChallenge and Session Key values from

PackageK by decrypting it, and then re-generates the OTP. Now, it can store both

the OTP and Session Key in its memory, which are going to be used to encrypt, sign,

and validate future messages.

To finish the authentication process and signal to the Mobile Gateway about

the success in validating the message, the Smart Object responds with a signed

HelloAcceptedMessage, following the equation below:

𝐻𝑒𝑙𝑙𝑜𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡 = 𝐺𝑎𝑡𝑒𝑤𝑎𝑦 𝐼𝐷 + 𝑆𝑚𝑎𝑟𝑡 𝑂𝑏𝑗𝑒𝑐𝑡 𝐼𝐷

(6)

𝐻𝑒𝑙𝑙𝑜𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒 =

𝐻𝑒𝑙𝑙𝑜𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡

+ 𝐻𝑀𝐴𝐶(𝐻𝑒𝑙𝑙𝑜𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑡𝑒𝑛𝑡)

(7)

Where the OTP is the HMAC key in (7).

The Mobile Gateway receives this message, validates the signature, and if

successful, the authentication process is over. Figure 6 illustrates the authentication

process.

Now, both devices communicate securely, encrypting messages with the

Session Key and signing them with OTP. A summary of all messages exchanged

during the authorization and authentication processes can be seen in Figure 7.

Figure 6 - Authentication process

Figure 7: Messages exchanged between components during authentication and

authorization processes.

4.2

Framework

EdgeSec Framework expands and evolves the original EdgeSec architecture

and protocol described within section 4.1. To achieve the desired flexibility, some

logical changes were needed on the protocol algorithm, and some new concepts

were introduced in the architecture.

4.2.1

Objectives and Use cases

The goal of the framework is to be a flexible and extensible security solution

for ContextNet and Mobile-Hub middlewares, allowing the use of different

protocols and algorithms in communications between devices. These middlewares

are usually used in different types of IoT applications, and many would benefit from

having an improved level of security such as the one provided by EdgeSec

framework. Some examples of use cases are:

• Smart Cities, where sensors are distributed across a vast area, and data is

collected through mobile phones that move throughout the city. This might

include sensitive and private data, so the framework could ensure privacy

and protection to users and administrators.

• Smart Hospitals, where different sensors can be spread around a hospital

facility, collecting data about patients and doctors. Because medical records

are always sensitive information, the framework could be integrated to a

smart hospital application to ensure data security.

• Industry 4.0, where many sensors can be installed around the industrial plant

and integrated with the machinery. This type of application can be critical

because edge devices can sometimes control the operation of very important

machines and processes. If a malicious hacker gets control of these assets,

an attack could cause great economic and physical impact. EdgeSec

Framework could be integrated into the software that controls the IoT

sensors to ensure the safety needed and protect against attacks.

From these examples, we can see that the framework should allow integration

with a wide range of IoT systems and to be compatible with devices used in different

sectors. To enable this flexibility, the framework is designed to accept different

types of plugins that can be provided by the user for the framework during

initialization. Details of how a plugin works are going to be given in section 4.2.2.

Considering the use cases mentioned above, we can define two types of target

users for the framework:

• IoT application developers, who want to enhance security in their

applications without the need of specific security knowledge. These

developers can just import, instantiate, and initialize the framework along

with the desired plugins.

• IoT devices manufacturers or hardware developers, who want to make their

devices more broadly compatible by developing plugins for the protocols

supported by these devices.

4.2.2

How it works

To enable the extensibility and flexibility mentioned before, the framework

design is divided into three main components:

• Framework core: responsible for executing the main algorithm to create

the security mechanisms. It runs on Mobile-Hub, which is connected both

to the cloud servers and to Smart Objects and have a larger processing

power.

• Framework authorization server: responsible for storing the

cryptographic keys and registration of each supported device. It receives

authorization requests from the mobile gateways, authorizing or blocking a

connection. It runs on a processing server in the cloud.

• Protocol specific plugins: plugins that implement interfaces defined by the

framework to ensure a specific protocol can be used by the core in its

algorithms. These plugins are divided into three types: authentication,

cryptography, and transport.

The framework core runs the same protocol that was proposed in the original

architecture, and explained in section 4.1, with the difference that it generalizes and

abstracts all protocol specific parts into external plugin function calls, and it adds a

handshake process to allow cipher negotiation. This negotiation was designed to be

similar to a standard TLS handshake, and it is described in a high level below:

1. Mobile-Hub, acting as client, sends the HandshakeHello message

containing its ID, version of the Framework, and a list of which protocol

suites it supports, in a preferred order. The suites supported by Mobile-Hub

will depend on the plugins available during initialization of EdgeSec

framework.

2. Smart Object, acting as server, sends the HandshakeResponse as response,

containing its ID, and the selected protocol suite. If it does not support any

of the protocol suites, it ends the connection.

3. Mobile-Hub receives and parses the response, storing the selected protocol

suite that should be used.

The authorization server should also be connected to a database to store

essential information used during authorization and authentication processes. This

information includes:

• List of each smart device registered in the application.

• A secret private key known only to the authorization server and used to sign

data.

• List of authentication keys for each of the registered devices.

• List of encryption keys for each of the registered devices.

• List of mobile gateways that are authorized to connect to each of the

registered devices.

• List of all protocols supported by the plugins used in the application.

Upon receiving an authorization request through the internet, the server will

fetch the required information from this database and perform some authorization

checks. It then prepares a response to the mobile gateway, including the keys and

other values that are used later during authentication and connection session. This

is the process described in section 4.1.3.

Lastly, plugins should implement one of the three interfaces provided by the

core:

• ITransportPlugin: interface for plugins that implement a WPAN

communication protocol, such as BLE, Bluetooth Classic, and Zigbee.

• IAuthenticationPlugin: interface for plugins that implement cryptographic

hashing function and digital signing algorithms, such as HMAC-MD5,

HMAC-SHA1, and DSA-SHA256.

• ICryptographicPlugin: interface for plugins that implement symmetric

encryption algorithms, such as RC4, AES, DES.

Each of these interfaces define functions that are used by the Framework Core

during the EdgeSec security algorithm. These functions are strongly tied to how the

algorithm works, and the steps taken to authorize and authenticate a device.

However, they are generic, and can be implemented using different protocols and

techniques. Each plugin should have an ID that uniquely identifies the protocol

implemented by it. A protocol suite is a string code composed of the three plugin

IDs for each protocol concatenated together. An example for a suite that uses BLE

as TransportPlugin, HMAC-MD5 as AuthenticationPlugin and RC4 and

CryptographicPlugin would be “BLE_HMAC-MD5_RC4”.

In the following sections we present code snippets detailing the content of

each interface, with brief comments for each function. These interfaces are written

in Kotlin programming language because a test implementation was made in Kotlin.

However, some language-specific details can be ignored, and the same interfaces

can be reproduced in any other programming language.

4.2.3

ITransportPlugin

The transport interface has many references to Observable keywords. This is

a data type available in Kotlin to make use of the Observable design pattern. These

data types represent an asynchronous emitter, an object that emits a certain primitive

value continuously in an asynchronous way, which is the usual behavior of a

communication protocol.

interface ITransportPlugin {

 /* Returns ID of protocol implemented by plugin */
 fun getProtocolID(): String;

 /* Scan for nearby compatible devices using a transport protocol */
 fun scanDevices(): Observable<String>;

 /* Tries to connect with a device using a transport protocol */
 fun connect(deviceID: String): Observable <Boolean>;

 /* Verifies if device is compatible with EdgeSec framework */
 fun verifyDeviceCompatibility(deviceID: String): Observable <Boolean>;

 /* Sends the handshakeHelloMessage to device */
 fun sendHandshakeHello(deviceID: String, data: ByteArray): Observable <Boolean>;

 /* Reads the handshakeResponse from device */
 fun readHandshakeResponse(deviceID: String): Observable <ByteArray>;

 /* Sends hello message to device */
 fun sendHelloMessage(deviceID: String, data: ByteArray): Observable <Boolean>;

 /* Reads the HelloMessageResponse from device*/
 fun readHelloMessageResponse(deviceID: String): Observable <ByteArray>;

 /* Reads data from device */
 fun readData(deviceID: String): Observable <ByteArray>;

 /* Writes data to device */
 fun writeData(deviceID: String, data: ByteArray): Single<Boolean>;

 /* Terminates connection with device */
 fun disconnect(deviceID: String);
}

4.2.4

IAuthenticationPlugin

interface IAuthenticationPlugin {

 /* Returns ID of protocol implemented by plugin */
 fun getProtocolID(): String;

 /* Digitally sign data using provided key with the protocol implemented by plugin */
 fun getMACSignature(data: ByteArray, key: Key): ByteArray;

 /* Verify a message authentication code signature */
 fun verifyMACSignature(data: ByteArray, key: Key, signature: ByteArray): Boolean;

 /* Generate a hash value using hashing function implemented by plugin */
 fun generateHash(payload: ByteArray): ByteArray;

 /* Return size in bytes of the hash generated by hashing function of protocol
implemented by plugin */
 fun getHashSize(): Int;
}

4.2.5

ICryptographicPlugin

interface ICryptographicPlugin {

 /* Returns ID of protocol implemented by plugin */
 fun getProtocolID(): String;

 /* Generate a random token using protocol implemented by plugin */
 fun generateSecureRandomToken(size: Int): ByteArray;

 /* Generate a secret key */
 fun generateSecretKey(seed: ByteArray): Key;

 /* Encrypt data using a provided key */
 fun encrypt(plainText: ByteArray, key: ByteArray): ByteArray;

 /* Decrypt data using a provided key */
 fun decrypt(cipher: ByteArray, key: ByteArray): ByteArray;

 /* Return size in bytes of the secret key of protocol implemented by plugin */
 fun getSecretKeySize(): Int;

}

5

Proof of Concept Implementation

One of the most important aspects of the proposed framework is proving its

utility in real world applications and show it working in practice. This framework

expanded from the original EdgeSec architecture to allow for more devices and

protocols to be used. Because of this, it was essential that a few practical tests and

prototypes were created to compare this framework architecture with previous

solutions and ensure the project could achieve its goals. In this section we explain

how the proof of concept was implemented, and in section 6 we go through the tests

that were made.

5.1

Technologies, Hardware, and Environment

As already explained in section 4, the initial security solution that was base

for EdgeSec framework was made concrete as an extension of ContextNet and

Mobile-Hub middlewares. Mobile-Hub 2 runs on Android devices and is written

in Kotlin programming language. Naturally, this first prototype of EdgeSec

framework was also written in Kotlin and developed as an Android Library to

facilitate its integration with the middleware.

Mobile-Hub 2 architecture is divided into different layers and services. On

the base layer, it’s the Core Library, which includes three main modules: (i) S2PA

Gateway, responsible for managing connection with sensors through WPAN

technologies, including collecting and writing data; (ii) Connection Gateway,

responsible for managing connection with upstream servers through WLAN

technologies, including sending sensor data to the cloud for processing; and (iii)

MEPA Gateway, responsible for processing complex events flowing through the

Middleware. On top of the core library is the Mobile-Hub Service, which bridges

these gateways and its functionalities with the top-level layer. And in the top-level

layer it’s the Mobile-Hub Configurator, responsible for configuring and integrating

Mobile-Hub with application layer apps.

Because EdgeSec Framework focuses on creating security mechanisms on

WPAN communication, its integration with Mobile-Hub 2 was done inside the

S2PA Gateway module. S2PA provides a WPAN programming interface for

interacting with sensors through different WPAN technologies in a transparent way.

To use a new protocol, we just need to implement the interface and import it inside

S2PA configuration.

This was the method used for incorporating EdgeSec Framework. We

implemented the S2PA’s WPAN interface in a new module called EdgeSec-WPAN.

Inside this module, the Framework code and all its plugins were initialized, creating

an abstraction layer between S2PA and real WPAN technologies such as BLE.

Figure 8 shows the architecture of Mobile-Hub 2, including the integration of

EdgeSec Framework.

The prototype code was divided into three different parts, following the same

logic division of the framework concept: core, plugins, and authorization server.

For the core, a Kotlin library consisting of a few different modules was developed.

The intention was to create a single deliverable file, such as a Java Archive (JAR),

that can be imported and incorporated inside another Android project.

For plugins, the same idea was applied, where different libraries were

implemented for each of the different types of plugins. In this case, because there

was a prior implementation of EdgeSec using BLE, MD5 and RC4 algorithms,

these same protocols were used to implement each plugin. An additional plugin was

implemented using SHA1 to prove the use of multiple protocols and compare

results.

As for the authorization server, it was developed as a separate Kotlin module,

that ideally should be executed in a remote server that would be connected to the

framework core code through a network. However, to simplify the development and

facilitate testing, this code was implemented as an isolated module, also running on

an Android device.

Figure 9 shows a class diagram of the prototype implementation. In Appendix

I, each part of the diagram is shown separately to help understanding the different

modules in more detail.

After the implementation of the framework, the next step was to incorporate

and use it inside Mobile-Hub. A few small adaptations were needed to make

EdgeSec Framework compatible with Mobile-Hub’s WPAN interface. JARs for the

Framework Core and each Plugin were imported and instantiated directly inside the

middleware code. References for each plugin implementation were provided for the

framework as reference during initialization and set up.

Figure 8 - Mobile-Hub 2 architecture + EdgeSec Framework integration

Figure 9 - Class Diagram of the implementation prototype

To run EdgeSec end to end, an edge device acting as Smart Object was also

needed. For this, we used an ESP32 microcontroller, that has built-in Bluetooth and

BLE capabilities. The framework and protocol logic were implemented in C++

language and uploaded to the ESP32 memory through Arduino IDE software. We

used third-party C++ libraries to execute the MD5 and RC4 algorithms. For MD5,

ArduinoMD5 from Spaniakos [23] and Hash-Library from Stephan Brumme [24].

For RC4 and BLE, we used libraries provided by ESP32’s manufacturer

EXPRESSIF [25]. And for SHA1, tiny-HMAC-c library by kokke [26] was used.

A few different design patterns were used to create the implementation project

and architecture. The main one is the Observer pattern, which was mostly used in

the transport plugin and in the framework core. This pattern is very well suited to

handle asynchronous communication and methods, which is important for many

transport protocols, such as BLE. This type of message is used during authentication

and secure data exchange operations between the mobile gateway and Smart

Object. Because of this, the Observable data type, which is provided by Android’s

io.reactivex library, was used to define parameters and return types in the

ITransportPlugin interface.

5.2

Practical Challenges

One of the most important concepts of the proposed framework is the

flexibility of using different security protocols and algorithms in a dynamic way.

As already described in section 4.1, the handshake process provides a way for two

parties to negotiate the suite of protocols that are going to be used in the

communication session.

However, in the prototype implementation, it was not possible to achieve a

working solution for the handshake negotiation within the project’s deadline. This

is a complex implementation, where some additional information such as the

number of bytes for each protocol suite needs to be sent and parsed in a dynamic

way. Despite doing some basic tests and designing the negotiation as pseudo-code,

we could not have a full implementation in time.

As mentioned in section 4.1, the protocol negotiation is not necessary for the

functioning of the security solution, and it was left as an opportunity for future

work. As a workaround, it was decided to store the protocol suite supported by each

device in the Authorization server, together with other registration data. During the

authorization process, the server can select a protocol suite during runtime and

return it to the Mobile Gateway as part of the authorization response. Because of

this, during the Handshake messages, only IDs need to be exchanged, facilitating

the implementation.

Another practical challenge faced in the prototype implementation was the

development of the Authorization Server itself. EdgeSec architecture expects this

component to be a server in ContextNet core, that can be connected to Mobile-Hub

securely through the internet. Achieving this meant setting up a new processing

server, developing code specific to this type of server, setting up a gateway on

ContextNet core, and establishing a secure VPN or TLS connection.

All these steps were not the focus of this project and are not required to make

EdgeSec framework work. Again, to facilitate implementation of this proof-of-

concept, we simulated the authorization server as an isolated Kotlin Module

running inside Mobile-Hub. This simplified the infrastructure set up and

communication with the Framework Core.

6

Experimental Results

6.1

Performance tests

Because EdgeSec Framework includes a new architecture, a refactoring, and

a redesign of the initial security solution, we decided to run performance tests on

our proof-of-concept implementation. The goal was to measure how these changes

would impact previous implementations, possibly gaining performance through

code optimizations, and ensuring it could remain as a viable real-world solution.

By introducing security mechanisms on top of existing communications, it is

impossible to completely avoid some performance overhead. The nature of many

security operations, such as digital signatures and data encrypting, implies

additional computation, that necessarily increases execution time. However, this

performance overhead should be proportional to the improvements achieved with

higher security and cannot create a considerable negative impact in the data flow or

application behavior.

To evaluate the performance impact, a detailed profiling of every step in

EdgeSec’ s algorithm was made. This included measuring the time taken to perform

each step of the authentication, authorization, and secure data exchange operations.

These measurements were made using devices with the following hardware:

• Running Mobile-Hub 2 code:

o Android 11 Smartphone device

o 2.3 GHz Octa Core CPU

o 6GB RAM

o Bluetooth 5.0

• Running the Smart Object code:

o ESP32 Microcontroller

o CPU Xtensa® Dual-Core 32-bit LX6,

o 520 KB RAM

o 240MHz Clock

o Bluetooth 4.2

As these tests were made on the prototype implementation described before,

it is important to highlight that the results obtained are directly related to the

protocol stacks used. We used two different protocol suites, and ten different

measurements were made for each suite in EdgeSec’ s code running on Mobile-Hub

2. The average time taken by each operation was computed separately, and these

values are shown in Table 1 and Table 2, one for each protocol suite.

Table 1 - Profiling of authentication process using BLE-RC4-HMAC-MD5

Table 2 - Profiling of authentication process using BLE-RC4-HMAC-SHA1

A comparison between a standard BLE connection, and a secure connection

with the authentication steps is presented in Table 3 and Table 4, highlighting the

total overhead of this process.

Authentication Steps (BLE, RC4, HMAC-MD5) Time average (ms) Standard Deviation

Send handshake hello 26.80 8.49

Read handshake response 28.10 7.18

 Create Hello Message 1.50 0.50

Send Hello Message (in 3 separate BLE messages) 242.60 18.03

Receive Hello Message Response 184.20 13.91

Verify Hello Message 0.20 0.40

Total time to authenticate 483.40 25.64

Authentication Steps (BLE, RC4, HMAC-SHA1) Time average (ms) Standard Deviation

Send handshake hello 25.30 7.81

Read handshake response 47.60 23.35

 Create Hello Message 1.60 0.49

Send Hello Message (in 4 separate BLE messages) 336.80 32.22

Receive Hello Message Response 225.00 2.37

Verify Hello Message 0.40 0.49

Total time to authenticate 636.70 37.98

Table 3 - Summary of authentication process using BLE-RC4-HMAC-MD5

(BLE, RC4, HMAC-MD5) Time average (ms) Standard Deviation

Standard BLE Connection 1075.20 40.22

Authentication Process 483.40 25.64

Total time to establish secure connection 1558.60 53.20

Tables 5 and 6 show measurements for the read data operation, which takes

place after two devices are already authenticated and are exchanging data securely.

For the BLE-RC4-HMAC-MD5 suite results from Tables 1, 3 and 5, we can

see that the default time to connect with a Smart Object is around 1.075 second, and

the additional overhead created by all operations of EdgeSec is around 483.4ms,

resulting in an increase of 45% in connection time. Additionally, the time taken to

read data through BLE is around 86.9ms, with a 3.50ms overhead for verifying

signature and encrypting/decrypting a message, resulting in a total time of around

90.4ms for reading or writing data securely, an increase of less than 4%.

For BLE-RC4-HMAC-SHA1 suite results from Tables 2, 4 and 6, we have a

similar pattern in results, with the values being slightly higher. 636.7ms of overhead

for the authentication process, representing an increase of 57% in connection time,

and 5.10ms of overhead for the read operation, representing an increase of 3%.

As mentioned before, these numbers are related to the suite of protocols used

during tests. Each protocol has specific operations and mechanisms used to

manipulate data, perform calculations, and execute algorithms. These operations

are intrinsic to how each protocol works, and most of the time it is not possible to

cut down on the resulting performance overhead. Even if we use protocols that are

more efficient, and fully optimize the implementation, some parts are not in control

of the framework code.

Table 4 - Summary of authentication process using BLE-RC4-HMAC-SHA1

(BLE, RC4, HMAC-SHA1) Time average (ms) Standard Deviation

Standard BLE Connection 1101.00 47.23

Authentication Process 636.70 37.98

Total time to establish secure connection 1737.70 68.07

Table 5 - Summary of secure read process using BLE-RC4-HMAC-MD5

(BLE, RC4, HMAC-MD5) Time average (ms) Standard Deviation

Standard BLE Read 86.90 4.06

Verify and decrypt message 3.50 1.75

Total time to secure read 90.40 5.00

Table 6 - Summary of secure read process using BLE-RC4-HMAC-SHA1

(BLE, RC4, HMAC-SHA1) Time average (ms) Standard Deviation

Standard BLE Read 156.10 3.91

Verify and decrypt message 5.10 2.39

Total time to secure read 161.20 3.89

A great example of this is the BLE protocol, where we need to wrap messages

into BLE Characteristics and group them into BLE Services. In EdgeSec

Framework, we created a security service to group all messages related to

authentication and data exchange algorithms. If we look at the Standard BLE

Connection time from the performance tests, that took 1.075 second on average,

more than 80% (852ms) of this was spent validating if both devices have

implemented the BLE security service. This has a considerable impact on the

overall performance of EdgeSec but could not be avoided when using this protocol

in this specific set up.

Another example is the difference between the read operation measurements

for HMAC-MD5 and HMAC-SHA1 tests. When running tests for HMAC-MD5,

we got an average of 86.5ms for a standard BLE read, while for HMAC-SHA1 tests

we got an average of 156.10ms for the exact same operation. This difference might

be the result of various factors, such as other background tasks running on the test

devices, the BLE connection latency, or the wireless signal strength. These are all

factors that are not related to the authentication protocols, and we cannot directly

control.

Comparing to previous works that served as foundations to EdgeSec, these

measurements represent an improvement from older tests, with lower execution

times for each step of the algorithm. However, the general trend was maintained,

leading to the same conclusions in terms of performance, as will be discussed in

section 6.2.

6.2

Results

From the results shown in section 6.1, we can see that there is a considerable

overhead for connecting and authenticating two devices, while the overhead for

exchanging data securely between them is negligible. During a communication

session, a connection operation usually happens only once, while data exchange

operation can happen multiple times. This indicates that the longer a session is, the

lower the total overhead imposed by the Framework. Because of this characteristic,

the requirements of the IoT system and application need to be considered when

evaluating the performance impact.

For applications that do not require frequent connections and disconnections

between devices, or that are not especially time sensitive (i.e., 500ms overhead

during connection does not affect application behavior), EdgeSec can hugely

improve security without significant performance costs. Some examples are:

• Environmental monitoring: IoT devices that are used to monitor various

environmental parameters such as air quality, temperature, humidity, and

more.

• Asset tracking: Tracking systems that use IoT devices to monitor the

location and state of valuable assets such as vehicles, equipment, or food.

• Agricultural monitoring: IoT devices deployed in agricultural fields to

monitor soil moisture levels, humidity, etc.

• Energy monitoring: Devices deployed to homes, buildings, and industrial

facilities to monitor energy consumption, analyzing usage patterns, and

optimizing energy distribution.

These are all use cases that would take great advantage of having security

mechanisms enforced in the operation and exchange of data. And depending on how

devices are deployed in the architecture, the overhead of EdgeSec would not have

a significant impact.

On the other hand, applications that have a high demand for

connection/disconnection operations or that are very time sensitive, might present

some challenges when using EdgeSec. As we could see from the experiments, most

of the time is spent performing operations that are part of underlying protocols, such

as BLE. While these operations are not part of the framework core, they are required

for the solution to work.

As a result, in time sensitive applications, the choice of which protocols to

use may directly impact the performance overhead of the framework, determining

if the impact it is acceptable or not. Examples of this type of application are:

• Autonomous vehicles: Smart vehicles packed with embedded IoT devices

rely on real-time connectivity to exchange data with each other and cloud

systems, making sure traffic is synchronized and capturing any external

input instantaneously. Delays in connection time can have severe

consequences, affecting safety, navigation, and decision-making

capabilities.

• Telemedicine: IoT devices used for remote patient monitoring and other

medical applications require real-time connectivity to transmit vital

information, and any delay could represent a risk to patient’s health.

• Industrial Automation: IoT systems in industrial automation, such as

manufacturing processes or robotics, require fast and reliable connections.

Delays in connection time can disrupt the synchronization of devices,

leading to production line bottlenecks, quality issues, or safety risks.

6.3

Opportunities for improvements and future work

As was already discussed here, there were a few gaps in the prototype

implementation that could be addressed in future work to create a more complete

and coherent solution. The first one is running the authorization server on a separate

machine, establishing a connection with Mobile-Hub through the internet. This

would mean an additional performance cost that should be evaluated in the results

analysis.

The second gap is the protocol suite negotiation during the handshake

process, which would transform EdgeSec Framework into a fully dynamic and

flexible solution, allowing it to be used with a larger number of devices. It could

facilitate and accelerate the process of pre-registration, creating less constraints and

more adaptability to new scenarios. This improvement is very important to extend

the usability of this solution and encourage more users to adopt the security

framework without considerable friction or efforts.

In terms of experiments, there would be important to test the framework with

a wider range of plugins and protocols, making it possible to better evaluate and

understand the bottlenecks that are part of the framework implementation, and the

ones that are particular to specific plugins. With more data coming from more

detailed and diverse experiments, we can act to refactor and improve the

Framework architecture, algorithm, and implementations, turning it into a better

solution.

Additionally, based on the results analysis where we have a higher cost for

frequent connections and disconnections, there is a strong opportunity for

improving the performance of this solution by introducing caching mechanisms. To

reduce the amount of connection operations, the same session key could be re-used

across different connections.

This could be achieved by determining a certain amount of time for a session

to expire. During that time, a session key remains valid. If two devices that have

previously being authenticated connect again with each other, they could verify and

re-utilize the same session key, avoiding a complete authentication and

authorization process. This would greatly improve the performance overhead cost,

and it is relatively simple to implement.

Lastly, because the framework increases the capabilities of Mobile-Hub and

extends the original implementation of EdgeSec into a more complete and adaptable

solution, it opens the possibility for future works. This may include:

• Improvements to the EdgeSec algorithm itself, introducing new and more

modern security mechanisms.

• Use of Software Defined Networks (SDNs) to increase control and

management of devices, security keys, and connections. SDNs may replace

some parts of the architecture, giving more control, visualization, and fine-

grained control to specific configurations of the network.

• Possibility of authenticating two Smart Objects together, using the Gateway

as an intermediate node that establishes the secure connection through

individual session keys.

• Extend the functionalities of each protocol interface, adding more

capabilities and customization to each plugin implementation.

All these possibilities may be implemented in a way that is transparent for

client applications, leveraging the concept of the framework abstraction. By just

updating EdgeSec to a new version, it could bring new features and functionalities

to the IoT system, without the need to change any of the client app source code.

7

Conclusion

EdgeSec Framework was proposed as an evolution of previous works that

aimed at providing a security solution for IoT applications. These past works were

developed and made concrete in the context of ContextNet and Mobile-Hub

middlewares, creating multiple security mechanisms that ensured authentication,

authorization, integrity, and confidentiality to data exchanged within a system.

However, these previous works lacked flexibility features, making it difficult

to integrate new devices or protocols into the architecture. The main goal of this

project was to transform these solutions into a complete security framework that

could be adaptable and extensible, allowing for new security mechanisms to be

easily incorporated. Additionally, some of the problems and challenges from the

original implementation needed to be addressed through optimizations and

refactoring so this security solution could have practical viability.

The design and development of EdgeSec Framework was successful and

achieved all its main objectives. This new solution builds upon the foundations

established in the original security architecture and implementations, addressing

their limitations and weaknesses, and introducing new concepts and logical

changes, always focusing on creating a flexible and robust security solution.

The framework consists of three main components: the framework core, an

authorization server, and protocol-specific plugins and interfaces. The core executes

the original EdgeSec security algorithm, with the addition of a handshake process.

The authorization server defines and stores all the security information involved in

the algorithm and provides access control capabilities. And the interfaces, organized

into three different types, provide a common standard for new plugins to be

implemented, extending the functionality and compatibility of EdgeSec.

Considering the previous works that EdgeSec Framework builds upon, and

the context in which this project is inserted, we highlight the following

contributions:

• The new handshake process elaborated and integrated into EdgeSec security

algorithm, enhancing its robustness and adaptability by incorporating a

protocol cipher negotiation. The handshake strengthens the flexibility of

EdgeSec, and by extension, the flexibility of Mobile-Hub, allowing devices

to dynamically decide which protocols are going to be used to communicate

securely.

• Three new protocol interfaces were designed, serving as a foundation for

incorporating new protocols into the solution through the implementation

of plugins. By defining standardized interfaces, the framework enables

seamless integration of various protocols that can be used in the algorithm,

without the need of changing any code on the framework core

implementation, improving flexibility and extensibility.

• The original EdgeSec implementation for Mobile-Hub 1 was completely

refactored into a new highly optimized version for Mobile-Hub 2. This

significantly improved the performance and efficiency of the solution,

which achieved way more acceptable results in tests and practical

experiments.

Despite some challenges faced during the prototype implementation,

including the incomplete handshake process, and the simulation of an authorization

server as an isolated module within Mobile-Hub, the proof of concept demonstrated

promising results. The overhead for connecting and authenticating devices is

somewhat considerable, while the overhead for secure data exchange is negligible.

This indicates that, in some cases, the framework can bring many benefits from the

enhanced security, with minimal performance impact, but this will heavily depend

on the type of application.

Future work should address the gaps in the prototype implementation to

facilitate the use of EdgeSec Framework in real world applications. This includes

running the authorization server on a separate machine to establish a connection

through the internet, complete the implementation of the handshake process,

expanding the compatibility with unknown edge devices, and implementing a

caching mechanism for reusing session keys and reducing performance overheads.

Further experiments with a wider range of plugins and protocols are also necessary

to identify additional points of improvements in the framework’s architecture and

algorithm.

In summary, EdgeSec Framework was presented in this work as a

comprehensive security solution for IoT middlewares, evolving and enhancing

previous implementations to achieve better flexibility, robustness, and extensibility.

By being incorporated into the many use cases of ContextNet and Mobile-Hub,

EdgeSec framework can create high levels of security and make these middlewares

into even more complete solutions for IoMT applications.

8

References

1 F. Dahlqvist, M. Patel, A. Rajko, J.Shulman (22 July, 2019). Growing
opportunities in the Internet of Things. McKinsey & Company. Last
accessed 25th June 2023: https://www.mckinsey.com/industries/private-
equity-and-principal-investors/our-insights/growing-opportunities-in-
the-internet-of-things

2 Internet Society. The Internet of Things (IoT): An Overview -
Understanding the Issues and Challenges of a More Connected World.
Accessed 25 June 2023:
https://www.internetsociety.org/resources/doc/2015/iot-overview/

3 M. Endler, F. Silva, and Silva, “Past, Present and Future of the
ContextNet IoMT Middleware”, In: Open Journal of Internet of Things
(OJIOT), vol.4, nr. 1, pages 7-23, ISSN = 23647108, July 2018.

4 L. Talavera Rios, M. Endler, I. Vasconcelos, R. Vasconcelos, M. Cunha,
F. Silva e Silva, “The Mobile-Hub Concept: Enabling Applications for the
Internet of Mobile Things”, In: 12th IEEE Workshop on Managing
Ubiquitous Communications and Services (MUCS 2015)

5 M. Endler, A. Silva, and R. Cruz, “An Approach for Secure Edge
Computing in the Internet of Thing”s. In: 2017 1st Cyber Security in
Networking Conference (CSNet), October 2017.

6 G. Cantergiani. Implementação da arquitetura de segurança EdgeSec
para os Middlewares de IoMT ContextNet e Mobile-Hub. Projeto Final
de Graduação, Departamento de Informática - PUC-Rio, June 2020.

7 W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge Computing: Vision and
Challenges," in IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-
646, Oct. 2016, doi: 10.1109/JIOT.2016.2579198.

8 "Personal Area Network." Wikipedia, Wikimedia Foundation, 24 June
2023, en.wikipedia.org/wiki/Personal_area_network. Accessed 7 Jun.
2023.

9 “Bluetooth Technology Overview”. Bluetooth Special Interest Group.
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/.
Accessed 8 June 2023.

10 K. Townsend. “Introduction to Bluetooth Low Energy”. Adafruit Learning.
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gap.
Accessed 8 June 2023.

11 K. Townsend. GATT | Introduction to Bluetooth Low Energy | Adafruit
Learning. https://learn.adafruit.com/introduction-to-bluetooth-low-
energy/gatt. Accessed 8 June 2023

12 "Message Authentication Code." Wikipedia, Wikimedia Foundation, 5
Jul. 2023, en.wikipedia.org/wiki/Message_authentication_code.
Accessed 9 June 2023.

13 "MD5." Wikipedia, Wikimedia Foundation, 5 July 2023,
en.wikipedia.org/wiki/MD5. Accessed 9 June 2023.

14 "SHA-1." Wikipedia, Wikimedia Foundation, 17 Jul. 2023,
en.wikipedia.org/wiki/SHA-1. Accessed 20 Jul. 2023.

15 R. Wilton, “Encryption unlocks the benefits of a thriving, trustworthy
Internet”. Internet Society.
https://www.internetsociety.org/resources/doc/2021/encryption-
unlocks-the-benefits-of-a-thriving-trustworthy-internet/ Accessed 9
June 2023.

16 M. B. Yassein, S. Aljawarneh, E. Qawasmeh, W. Mardini and Y.
Khamayseh, "Comprehensive study of symmetric key and asymmetric
key encryption algorithms," 2017 International Conference on
Engineering and Technology (ICET), Antalya, Turkey, 2017, pp. 1-7, doi:
10.1109/ICEngTechnol.2017.8308215.

17 "RC4." Wikipedia, Wikimedia Foundation, 3 Jun. 2023,
en.wikipedia.org/wiki/RC4. Accessed 9 June 2023.

18 "One-Time Password." Wikipedia, Wikimedia Foundation, 6 Apr. 2023,
en.wikipedia.org/wiki/One-time_password. Accessed 10 June 2023.

19 J. Pacheco and S. Hariri, "IoT Security Framework for Smart Cyber
Infrastructures," In: 2016 IEEE 1st International Workshops on
Foundations and Applications of Self* Systems (FAS*W), Augsburg,
Germany, 2016.

20 M. Bagaa, T. Taleb, J. B. Bernabe and A. Skarmeta, "A Machine
Learning Security Framework for Iot Systems," in IEEE Access, vol. 8,
pp. 114066-114077, 2020.

21 S. Sridhar and S. Smys, "Intelligent security framework for iot devices
cryptography based end-to-end security architecture," 2017
International Conference on Inventive Systems and Control (ICISC),
Coimbatore, India, 2017.

22 R. -H. Hsu, J. Lee, T. Q. S. Quek and J. -C. Chen, "Reconfigurable
Security: Edge-Computing-Based Framework for IoT," in IEEE Network,
vol. 32, no. 5, pp. 92-99, September/October 2018

23 ArduinoMD5, Spaniakos | Github.
https://github.com/spaniakos/ArduinoMD5 . Accessed 10 April 2023.

24 Hash-library, Stephen Brumme | Github.
https://github.com/stbrumme/hash-library . Accessed 10 April 2023.

25 ESP32 Overview | Espressif Systems.
https://www.espressif.com/en/products/socs/esp32/overview.
Accessed 17 April 2023.

26 tiny-HMAC-c, kokke | Github. https://github.com/kokke/tiny-HMAC-c.
Accessed 15 July 2023.

9

Appendix

Appendix I – Image illustrating each part of the prototype diagram.

Figure 10 - Diagram of Framework Core

Figure 11 - Diagram of Interfaces and Plugins

Figure 12 - Diagram of Authorization Server/ContextNetCore

